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Abstract

Vibration often occurs in the nozzles of tur-
bojets. In an effort to quantify the vibra-
tions in a nozzle, this paper will solve second-
order equation of motion of a thin cylinder us-
ing Sturm-Liouville Theory and a generalized
Fourier series. A transient cylindrical model
will be created from the solution.

Assumptions

Nozzle acts as a thin cylinder
No deflection in mid length supports
Axial symmetry
Negligible axial displacement

Nomenclature

θ Angular coordinate
t Time
R Radius
x Axial coordinate
h Nozzle Length
s Non-dimensional axial coordinate (x/h)
w Radial displacement
u Axial displacement
v Circumferential displacement
ρ Density
ν Poison’s ratio
E Modulus of Elasticity

Introduction

The final component of a jet turbine is the
nozzle. Since a nozzle converts the internal
energy of the working fluid into thrust, noz-
zles deal with high temperatures and signifi-
cant forces.

Nozzles are typically thinner than the other
components of a jet turbine and can consist of
dozens of parts to allow for mid-flight changes
to their geometry. Both of these features
make nozzles prone to fail by vibration. In
fact, vibrations have the potential to jeopar-
dize a nozzle far before forces would detach
the nozzle from the nacelle. Thus, nozzles
must be designed with minimal vibrations.

The purpose of this study is to quantify
and plot the transient effects of vibration
on a nozzle. This will be done through the
second-order equation of motion for a cylin-
drical membrane. This is shown in equation
(1).

∂2w

∂s2
=

ρ(1− ν)2R2

E

∂2w

∂t2
(1)

The geometry and boundary conditions
chosen will be based on the nozzle currently
being designed by a BYU capstone team for
a small-scale turbine.
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Model

Formulation

The equation of motion for a thin cylinder are
given in the coupled set of partial differential
equations:1

∂2w
∂s2

+ (1−ν)
2
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2
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∂s∂θ

+ ν ∂u
∂s

= ρ(1−ν2)R2

E
∂2w
∂t2

(1+ν)
2

∂2w
∂s∂θ

+ (1−ν)
2

∂2v
∂s2

+ ∂2v
∂θ2

+ ∂u
∂θ

= ρ(1−ν2)R2

E
∂2v
∂t2

ν ∂w
∂s

+ ∂v
∂θ

+ u = ρ(1−ν2)R2

E
∂2u
∂t2

(2)

Upon applying the assumptions, we can
look at only the 1st equation in the couple,
which reduces to a second-order PDE (1).
Displacement, w(s, t), can be treated as the
product of a function of s and a function of
t. The function of s and the function of t can
be independently written in self-adjoint form
and solved through the Sturm-Liouville solu-
tion pathway2 given the boundary conditions
below:

w(0, t) = 0 (3)

w(1, t) = A sin (ωt) (4)

w(s, 0) = 0 (5)

w(2/3, t) = 0 (6)

Note that boundary conditions (3) and (5)
are of the Dirichlet type and come from the
nozzle being fixed to the engine and the noz-
zle starting with no displacement. Condi-
tion three is a function of natural frequency.3

Condition (6) is the result of a rod that con-
nects to the nozzle in order to actuate it. As
stated earlier, we are assuming this rod does
not deflect.

Solution

Recall that we are solving equation (1), which
is a separable equation. We assume the solu-

tion is in the form

w(s, t) = X(s)T (t) (7)

Plugging this into our original equation, we
get

X ′′

X
=

ρ(1− ν2)R2

E

T ′′

T
= µn = −λ2

n (8)

where µ is our separation constant. This cre-
ates two eigenvalue problems, one for X and
one for T . Starting with the problem for X,
we get

X ′′ + λ2
nX = 0 (9)

By seeing that the characteristic equation has
roots ±λni we can determine that the solu-
tion for x is in the form

Xn(x) = c1 cos(λns) + c2 sin(λns) (10)

Applying condition (3) to equation (10) can
determine that c1 = 0 so we are left with

X = c2 sin(λns) (11)

We can then evaluate the eigenvalues by look-
ing at condition (6).

X(2/3) = sin(
2λn

3
) = 0

λn =
3nπ

2
, n = 1, 2, ... (12)

Now, we can look at the eigenvalue problem
for T.

T ′′ +
λ2
nE

ρ(1− ν2)R2
T = 0 (13)

Using the characteristic equation, we deter-
mine the form of the solution is

T = c3 cos(λn

√
E

ρ(1− ν2)R2
x)

+ c4 sin(λn

√
E

ρ(1− ν2)R2
x) (14)
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We already know the eigenvalues, but we still
need to determine the constants. Using con-
dition (5) we determine that c3 = 0, so our
solution for T is now

Tn(t) = c4 sin(λn

√
E

ρ(1− ν2)R2
x) (15)

Now, we can use equations (11) and (15) to
form w as defined in (7).

wn(s, t) =

cn sin(λns) ∗ sin(λn

√
E

ρ(1− ν2)R2
x) (16)

combining c2 and c4 into c because they are
both arbitrary constants. We can then de-
fine c using condition (4) and the Generalized
Fourier Series. For time 0 to t1, c is defined
as

cn =

A
∫ t1
0

sin(ωt) sin(λn

√
E

ρ(1−ν2)R2 t) dt

sin(λn)
∫ t1
0

sin2(λn

√
E

ρ(1−ν2)R2 t) dt
(17)

The final result is

w(s, t) =
∑
n=1

wn(s, t) (18)

with cn as defined in (17) and λn as defined
in (12).

Results

The solution modeled in MATLAB using
dimensions corresponding to a JETCAT
P100RX turbojet nozzle made out of stain-
less steel. Fifty terms were used in the series
for each value of w. Further information on
the variables is contained in the comments
of the code in the appendix.

Above is the nozzle at time t = 0 seconds.
As we can see from the bar on the right, no
displacements are present. Below is the noz-
zle at time t = 5 seconds.

Conclusions

Upon analyzing the displacements present in
the graph, we conclude that they are on the
order of micro-inches. Despite the presence
of vibrations, the selected jet turbine nozzle
geometry will be able to function with negli-
gible vibrational effects.

3



Journal of Applied Engineering Mathematics
Volume 11, December 2024

References

1A. W. Leissa, “Vibration of Shells,”
NASA, Washington D.C, 1973. Ac-
cessed: Dec. 04, 2024. [Online]. Available:
https://www.vibrationdata.com/tutorials
alt/Leissa vibration shells.pdf

2 Solovjov, Vladimir. “Integrated En-
gineering Mathematics.” ME505,
Brigham Young University, 2021,
https://www.et.byu.edu/ vp-
s/ME505/IEM/08%2002.pdf

3Raj, K. Arul, et al. “Tribological and
Vibrational Characteristics of Aisi 316L
Tested at Elevated Temperature and
600torr Vacuum.” Defence Technology,
China Ordnance Society, 18 June 2018,
www.sciencedirect.com/science/article/pii/S2214914718300448.

4



Journal of Applied Engineering Mathematics
Volume 11, December 2024

Appendix

1 clc;

2 clear;

3 clf;

4

5 % Parameters

6 A = 0.001;

7 h = 2; % Height of the cylinder (in)

8 D = 1; % Stiffness -like constant

9 rho = 1.189*10^ -5; % Density of air at 1472 F (lbf/in^3)

10 nu = 0.25; % Poisson ’s ratio for SST316L

11 E = 27.6 * 10^6; % Young ’s modulus (psi)

12 n_terms = 50; % Number of Fourier terms

13 t = linspace(0, 5, 200); % Time range (0 to 5 seconds)

14 x = linspace(0, h, 200); % Spatial domain (0 to h)

15 r = linspace(2, 1, 200); % Radial range

16 theta = linspace(0, 2 * pi, 100); % Angular range

17 omega = 120*2* pi; %natural angular frequency , see source 3

18

19 % Preallocate w

20 w = zeros(length(t), length(x));

21

22 % Generalized Fourier series calculation

23 for n = 1: n_terms

24 lambda_n = (3 * n * pi) / 2; % lambda_n for nth term

25

26 term_n = sqrt(E / (rho * (1 - nu^2) * r(n)^2));

27 % Define a_n using numerical integration with improved precision

28 numerator = A * integral(@(tau) sin(omega * tau) .* ...

29 sin(lambda_n * tau .* term_n), ...

30 0, 5, ’RelTol ’, 1e-8, ’AbsTol ’, 1e-8); % High precision

31 denominator = integral(@(tau) sin(lambda_n * tau .* term_n).^2, ...

32 0, 5, ’RelTol ’, 1e-8, ’AbsTol ’, 1e-8); % High precision

33 a_n = numerator / denominator;

34

35 % Compute the nth term of w

36 X_n = sin(lambda_n * x / h); % Spatial part

37 T_n = a_n .* sin(lambda_n .* term_n .* t’); % Time -dependent part

38 w = w + T_n * X_n; % Accumulate Fourier terms

39 end

40

41 % Cylindrical surface plot (r, theta , x)

42 [R, Theta] = meshgrid(r, theta);

43 X_cyl = R .* cos(Theta); % Cylindrical to Cartesian conversion

44 Y_cyl = R .* sin(Theta); % Cylindrical to Cartesian conversion

45 Z = repmat(x, length(theta), 1); % Height (x is along the height)

46

47 % Create a 3D matrix for W (time -dependent displacement)

48 W = zeros(size(X_cyl , 1), size(X_cyl , 2), length(t));

49 for i = 1: length(t)

50 W(:, :, i) = repmat(w(i, :), size(X_cyl , 1), 1); % Match displacement

to cylindrical coordinates
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51 end

52

53 % Plot the surface

54

55 for i = 1: length(t)

56 surf(X_cyl , Y_cyl , Z, W(:, :, i), ’EdgeColor ’, ’none’); % Plot W on

the surface

57 colormap(jet);

58 colorbar;

59 caxis([-max(abs(w(:))) max(abs(w(:)))]);

60 xlabel(’Z (inches)’,’FontName ’, ’Times New Roman’);

61 ylabel(’Y (inches)’,’FontName ’, ’Times New Roman’);

62 zlabel(’Height (inches)’,’FontName ’, ’Times New Roman’);

63 text (0.5, -0.1, [’Cylindrical Displacement w in inches at t = ’,

num2str(t(i)), ’ s’], ...

64 ’Units’, ’normalized ’, ... % Normalized coordinates for

positioning

65 ’HorizontalAlignment ’, ’center ’, ... % Center alignment

66 ’FontName ’, ’Times New Roman’, ... % Times New Roman font

67 ’FontSize ’, 12); % Font size

68 axis equal;

69 pause (.001);

70 end

Listing 1: MATLAB Code for Cylindrical Displacement Analysis
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