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Abstract
Manning’s equation is widely used for estimating flow
in open channels due to its simplicity and empirical ba-
sis. However, its accuracy can be limited in complex flow
conditions. This study compares the performance of Man-
ning’s equation with the Navier-Stokes equations in rect-
angular channels under varying Reynold’s Numbers. As-
suming a smooth channel (n = 0.01), we compared the
two flowrates. Our results indicated that exact matches
between the two equations occurent when the aspect ratio
(α) of the channel was between 17 and 45, with errors less
than 5%. This agreement occurred when the flow depth
was significantly greater than the channel width, suggest-
ing that under these conditions, the roughness assump-
tions of Manning’s equation align more closely with the
fundamental physics captured by the Navier-Stokes equa-
tions. These findings highlight the limitations of Man-
ning’s equation in laminar flow conditions and those of
applying the simplified Navier-Stokes equations to turbu-
lent flow.

Nomenclature
Navier-Stokes Variables:

ui/j = Velocity vector (m/s)

P = Pressure (Pa)

µ = Dynamic viscosity (Pa·s)

gi = Gravitational acceleration vector (m/s2)

t = Time (s)

xi/j = Spatial coordinate (m)

ρ = Fluid density (kg/m3)

ν = Kinematic viscosity (m2/s)

Manning’s Equation Variables:

Q = Volumetric Flowrate (m3/s)

A = Cross-sectional area of flow (m2)

n = Manning’s roughness coefficient

RH = Hydraulic radius (m)

Pw = Wetted perimeter (m)

S = Channel slope (m/m)

V = Average velocity (m/s)

Shared Variables:

b = Channel bottom width (m)

h = Flow depth (m)

Re = Reynolds number (dimensionless)

α = h/b = Aspect ratio (dimensionless)
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Introduction
Measuring and predicting flow in open channels is a fun-
damental aspect of both hydraulic engineering and engi-
neering hydrology. Several methods exist for estimating
flow characteristics, the most import of which being vol-
umetric flow rate (Q).
The most commonly used method for estimating flow

in open channels is Manning’s equation:

Q =
1

n
AR

2/3
H S1/2, (1)

where hydraulic radiusRH is defined as the ratio of the
cross-sectional area of flow to the wetted perimeter, given
as

RH =
A

Pw
. (2)

Manning’s equation is applied to all open channels,
from culverts, streams, and rivers to large canals with
gravity-driven flows [2]. It’s popularity stems from its
simplicity and, allowing engineers to quickly estimate
flow rates based on channel characteristics [2]. However,
Manning’s equation has several limitations, including its
purely empirical (rather than theoretical) nature, assump-
tions of uniform flow, and sensitivity to the roughness co-
efficient, n, which must be estimated for the channel [1].
These limitations can lead to inaccuracies in flow con-
ditions that exhibit varying channel geometries, varying
channel roughnesses, unsteady flows, and laminar flow
regimes.
For more complex flow conditions, the Navier-Stokes

equations provide a comprehensive framework for model-
ing fluid dynamics. The Navier-Stokes equations describe
the motion of viscous fluid substances and are derived
from the principles of conservation of mass, momentum,
and energy. They can capture a wide range of flow phe-
nomena, including turbulence, boundary layer effects, and
non-uniform flow profiles.
In this paper, we evaluate the accuracy of Manning’s

equations for laminar flow conditions in an open rectan-
gular channel (1). We do this by comparing volumetric
flowrates obtained with Navier-Stokes equation for lami-
nar flow to those obtained by Manning’s equation for sev-
eral flow velocities and channel aspect ratios. We do not
solve the full Navier-Stokes equations, but rather simplify

Figure 1: Rectangular channel and coordinate system.

them using the conditions for Manning’s equation, except
for turbulence.

Methodology

Governing Equations
We determine the flow regime using the Reynolds number
(Re), defined as

Re =
V RH

ν
, (3)

where V is the characteristic velocity (m/s), RH is the
hydraulic radius (m), and ν is the kinematic viscosity
(m2/s). We will consider laminar flow conditions to be
such that Re < 500.
For gravity-driven flows, the Navier Stokes equation is

given as

ρ

(
∂ui

∂t
+ uj

∂ui

∂xj

)
= − ∂P

∂xi
+ µ

∂2ui

∂x2
j

+ ρgi, (4)

where ρ is the fluid density (kg/m3), ui is the velocity
vector (m/s), P is the pressure (Pa), µ is the dynamic vis-
cosity (Pa·s), and gi is the gravitational acceleration vector
(m/s2).

Assumptions
The following assumptions were made to simplify the
Navier-Stokes to match the conditions necessary to apply
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Manning’s equation:

• The fluid is water→ ρ = C, µ = C.

• Flow is steady→ ∂
∂t = 0.

• Flow is uniform→ ∂P
∂x = 0.

• Channel is infinite in the flow direction→ ∂
∂x = 0.

• Flow is irrotational→ u · ∇u = 0.

Applying our assumptions to the x-momentum equa-
tion, we simplify it to

−ρgx = µ

(
∂2u

∂y2
+

∂2u

∂z2

)
, (5)

where gx is the component of gravitational acceleration in
the x-direction (m/s2), and u is the velocity component in
the x-direction (m/s).
With boundary conditions:

1. No slip at the bottom and sides:

• u|y=0,z = 0

• u|y,z=0 = 0

• u|y,z=b = 0

2. Symmetry at the free surface:

• ∂u
∂y |y=h,z = 0

These boundary conditions are illustrated in Figure 2.

Velocity and Flowrate Calculations
Next we non-dimensionalize the equations using the fol-
lowing variables:

ŷ =
y

h
, ẑ =

z

b
, û =

uν

h2g sin θ
, (6)

where θ is the angle of the channel slope. Substituting
these into the simplified Navier-Stokes equation, we ob-
tain the non-dimensional form

−1 =
∂2û

∂ŷ2
+ α2 ∂

2û

∂ẑ2
, (7)

where α = h
b is the aspect ratio of the channel.

Figure 2: Boundary conditions for open channel flow.

Figure 3: Non-dimensionalized velocity profile.

We solve this equation using separation of variables and
apply the boundary conditions to find the velocity profile

û(ŷ, ẑ) = ŷ− ŷ2

2
+

∞∑
n=1

An sin(λnŷ) cosh
[
λn

α

(
ẑ − 1

2

)]
,

(8)
where

An =
−2

λ3
n cosh

(
λn

2α

) and λn = (2n− 1)
π

2
(9)

As shown in Figure 3, the flow distribution meets the
boundary conditions defined previously.
The volumetric flow rateQ is calculated by integrating
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the velocity profile over the cross-sectional area:

Q =

∫ b

0

∫ h

0

u(y, z) dy dz. (10)

We are left with a final expression for Q in terms of
channel dimensions and fluid properties:

Q =
h3bg sin θ

ν

[
1

3
− 4h

b

∞∑
n=1

1

λ5
n

tanh
(
λnb

2h

)]
(11)

Reynold’s Number Selection
To evaluate the performance of Manning’s equation under
laminar flow conditions, we selected a range of Reynolds
numbers (Re) from 250 (laminar) to 12,500 (fully turbu-
lent).
For each selected Re, we calculated the flowrate for

a combination of channel widths (b = 0.01 to 5 m) and
slopes (S = 0.01 to 0.1 m/m). From the Navier-Stokes de-
rived flowrate, we calculated Manning’s n using the rear-
ranged Manning’s equation. If Manning’s equation were
accurate, the calculated n values would fall within typical
ranges for smooth rectangular channels (0.009 to 0.012).

Results and Discussion
We found that no Re yielded similar discharge values in
both the Navier-Stokes and Manning’s equations. when
using typical values of Manning’s n for smooth rectangu-
lar channels. Figure 4 shows the comparison of flowrates
across testedRe values, with small regions where the two
flowrates are equivalent. Table 1 summarizes the best
matches found for each Re, along with the corresponding
aspect ratio

Table 1: Best Match per Reynolds Number
Re Optimal α Error (%)

250 34.1 0.0544
500 24.7 0.0167
2,000 23.2 0.593
12,500 24.1 0.0509

Figure 4: Comparison of Navier-Stokes and Manning’s
flowrates across Reynolds numbers.

Exploring further, we found a range of aspect ratios
where the percent error between was minimized. Figure 5
shows the error between the two flowrates across aspect
ratios for all tested Re values. The area highlighted in
green indicates the range where the comparisons have an
error of less than 5%.
Our analysis revealed the Navier-Stokes flowrates were

greater than the Manning’s flowrate for aspect ratios
greater than about 45 and across allRe values. The oppo-
site was true for aspect ratios less than 17. Table 2 summa-
rizes the global aspect ratio range where the error between
the two flowrates is less than 5%.

Table 2: Global α Range with < 5.0% Error
Statistic Value

Min α 17.0
Max α 44.8
Mean α 26.7

The alpha values minimizing percent error suggest
agreement occurs when the depth of flow is much greater
than the width of the channel. Considering the fundamen-
tal physics governing the Navier-Stokes equations and the
empirical nature of Manning’s, we understanding why we
see some agreement. Navier-Stokes account for the vis-
cous forces acting across the entire cross-section of the
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Figure 5: Error reduction of Navier-Stokes andManning’s
Discharge.

flow, while Manning’s simplifies these effects into a sin-
gle roughness coefficient n. When the flow depth is sig-
nificantly greater than the channel width, the influence of
roughness on the channel walls is felt throughout the entire
flow area. With roughness affecting the entire flow, the
friction forces fromManning’s equation behavemore sim-
ilarly to the viscous forces from the Navier-Stokes, lead-
ing to closer agreement in flowrates.

Conclusions
Our study compared the performance of Manning’s
equation with the Navier-Stokes equations in rectangu-
lar channels under laminar and turbulent flow condi-
tions. We compared an analytically derived flowrate from
the Navier-Stokes equations to the empirically derived
flowrate from Manning’s equation across a range of Re
values (250 to 12,500). Our results indicated that exact
matches between the two flowrates were not achievable
across anyReynolds numbers using typical values ofMan-
ning’s n for smooth channels. However, we identified
a range of aspect ratios (17 to 45) where the error be-
tween the two flowrates was less than 5%. Agreement oc-
cured when the flow depth was significantly greater than
the channel width, suggesting that the roughness assump-
tions of Manning’s equation align more closely with the
viscous forces captured by Navier-Stokes. These findings

highlight the limitations of Manning’s equation in lami-
nar flow conditions and those of applying the simplified
Navier-Stokes equations to turbulent flow.
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