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Abstract
Seismic activity has far-reaching consequences for build-
ing safety and the environment. This paper presents a sim-
plified model for seismic waves induced by cosmic im-
pacts. This model applies the circular transform to solve
the wave equation for a single radial coordinate with a
localized initial displacement. Displacements and wave
movements are simulated. Results are verified to match
expected behavior. Simulations with damping representa-
tive of various geomaterials are conducted and compared.
Implications and possible improvements to the model are
discussed.
Keywords: Circular Integral Transform, Seismic

Waves, Laplace Transform

1 Intro
Understanding and predicting consequences of seismic
events is critical for understanding survivability of struc-
tures and making related design decisions. One of the
earthquake waves that has the largest impact in structure
survivability are Rayleigh waves (transverse waves). Sur-
vivability becomes a large concern when the seismic event
becomes significant on the world scale, like a species-
ending impact from an asteroid. In this paper, an analyti-
cal model for a seismic wave due to an asteroid impact is

created using the circular integral transform and Laplace
transform of a damped wave equation. The initial impact
of the asteroid is modeled as a large displacement with a
extremely small radius. The model is also tuned with real
world parameters from previous studies to produce rea-
sonable results. The simulation is rerun for different at-
tenuation factors to see how different soil types affect the
predicted results. The results presented here can help in-
form engineers where to build structures that will survive
an extra-terrestrial impact—even if the engineers don’t.

2 Methods
2.1 Assumptions and Initial Equation

The initial impact of the asteroid is assumed to have a
small impact area, but introduce a significant displace-
ment relative to the size of the earth. The crust of the
earth is modeled as a very thin surface of a perfect sphere.
The damping and other parameters of the system are as-
sumed to be linear and homogeneous across the surface of
the planet. The seismic waves of the earth’s crust were
assumed to have azimuthal symmetry about the impact
point. Although significant, water is neglected in the so-
lution. Additionally, the model assumes no mass loss due
to ejection of material into space from the impact.
Given these assumptions, said impact can be modeled
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using the wave equation with one radial coordinate and a
single linear damping term as seen in Equation 1. In this
equation, u is the displacement, t refers to time, θ is the
angular coordinate, R refers to the radius of the sphere, µ
is the wavespeed of the surface, and γ relates to the damp-
ing of the material. For this paper, the collision is modeled
as an initial displacement as seen in equations 2 and 3.
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2.2 Circular Transform Method
Given the radial coordinate system and recurring bound-
ary conditions, Equations 4 and 5, the circular integral
transform is an appropriate solution method for this form
of the wave equation. Applying the circular integral trans-
form to equations 1 through 3 yields the transformed dif-
ferential equation 6 with initial conditions 7 and 8.
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Equation 6 simplifies to Equation 9, a linear, homoge-
neous, second-order differential equation.
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+ 2γµ2 ∂un

∂t
+
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R2
un = 0 (9)

This type of ODE can be solved using the Laplace trans-
form. Transforming each term from variable ûn(θ, t) to
Un(θ, s)and simplifying, we arrive at Equation 10

Un(θ, s) = M0cos(nθ)
s+ 2γµ2

s2 + 2γµ2s+ n2µ2/R2
(10)

Using the quadratic formula, we can factor the denom-
inator to arrive at a form convenient for performing the
inverse Laplace transform.

Un(θ, s) = M0cos(nθ)
s+ 2γµ2

(s− r1)(s− r2)
(11)

where r1,2 are defined as:

r1,2 = −γµ2 ±
√

γ2µ4 − n2µ2/R2 (12)

The inverse laplace results in the solution:

ûn =
M0cos(nθ)

r1 − r2
[(2γµ2 + r1)e

r1t − (2γµ2 + r2)e
r2t]

(13)
Unfortunately, when the roots, r1,2 are complex, this so-

lution outputs a complex result with no physical meaning.
Therefore, another inverse Laplace approach is taken for
complex-valued roots, which yields a real-valued result.
Tomake the derivation of the complex root solution leg-

ible, we first use the following substitutions to Equation
10: a = γµ2, ω2 = n2µ2/R2, and K = M0cos(nθ).
Completing the square in the denominator, and separating
the numerator results in

U(θ, s) = K

[
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+
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√
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Performing the inverse Laplace transform then yields
Equation 15

ûn = K
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e−at cos

(
t
√
ω2 − a2

)
+
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ω2 − a2

e−at sin
(
t
√
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)] (15)

The final solution shown in Equation 16 consists of an
infinite series of these solutions, where the equation used
for ûn depends on whether the roots of the characteristic
polynomial are real or complex. If the roots are real valued
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for a given value of n, Equation 13 is used, and if the roots
are complex, Equation 15 is used.

u =
1

2π
û0 +

1

π

∞∑
1

ûn (16)

3 Results
The parameter values used in our solution are given in Ta-
ble 1. For R, the mean diameter of the earth was used.
For µ and γ, values were derived from [1], [2], and [3].
The Q values given in these articles were converted to an
equivalent value for γ using Equation 17 and assuming
f = .005. Furthermore, our Fourier series solution was
truncated at n = 50.

γ =
πf

Qµ2
(17)

Table 1: Model Parameters for nominal and alternative
cases
Parameter Earth Crust

(Nominal) Sandstone Soda-Lime
Glass

M0 (m) .0 .0 .0
µ (m/s) 4500 4500 4500
γ (s/m2) 4.848e−12 3.694e−11 5.350e−13
R (m) 6.371e6 6.371e6 6.371e6

The result of our original analysis is shown in Figure 1.
For this publication, the result is plotted in Cartesian coor-
dinates to capture change over time. Some jaggedness is
induced due to the truncation of the infinite sum and was
reduced using a simple gaussian smoothing function (for
graph clarity). The Gaussian smoothing does reduce the
overall amplitude of the wave, and would have to be ac-
counted for if the initial amplitude was physically based,
which is not currently the case. See the code in the ap-
pendix for a time based version of the wave’s coordinates
transformed to spherical coordinates.
Importantly, the solution matches the stated boundary

conditions and expected behavior. The solution is peri-
odic over 2π as the boundary conditions require. Initially,
the entire surface is at rest, except for the initial displace-
ment at θ = 0. This displacement then travels across the

surface, decreasing in amplitude due to the damping. At
θ = π, the waves traveling across the sphere’s surface
converge on the other side of the sphere, briefly amplify-
ing the wave before returning back across the sphere.

3.1 Parameter Study
In addition to observing the nominal result, the impact of
the γ variable was investigated through a parameter study.
γ values were varied tomatch equiavelent damping of sev-
eral geomaterials as seen in Table 1. Sandstone being an
example with higher damping than Earth’s crust and soda-
lime being an example of decreased damping. Note that
wavespeed, µ, was held constant, though this would also
vary in reality.
The results of these additional simulations are shown in

Figures 2 and 3. Again, the simulation results matched ex-
pectations. With the increased damping of sandstone, the
wave begins to travel across the surface, but is effectively
attenuated before completing a full cycle. Alternatively,
the soda-lime glass with decreased damping continues to
reverberate strongly, only lightly diminished after a full
cycle.

4 Discussion
One major problem with this model is the uncertainty in
the parameters used. Measuring the equivalent wavespeed
of Earth’s crust and its effective damping is difficult. Esti-
mating the displacement caused by an asteroid is also quite
complicated. Unfortunately, the model is very sensitive to
these parameters.
In addition, the assumptions made to arrive at our initial

equation are significant. Obviously, the composition of
the earth’s crust is not uniform, implying that wavespeed
and damping are actually functions of position. This
would disrupt the symmetry shown in these simulations,
negating the superposition effects at θ = π, 2π. In ad-
dition, most forms of damping are not linear nor is the
earth perfectly spherical. In some ways, even the circu-
lar transform is problematic when applied to spherical ob-
jects. In reality, as the seismic wave travels from the ori-
gin to θ = π

2 , the affected area increases, suggesting that
the wave should naturally diminish. Instead, the circular
transformmodels the behavior as a circular string, neglect-
ing this change in affected area.
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Figure 1: Simulation results of the deformation of the
Earth’s crust. The theta axis is the angle relative to the
impact location in radians.

Figure 2: Simulation results for an Earth made of Sand-
stone. The theta axis is the angle relative to the impact
location in radians.

Figure 3: Simulation results for an Earth made of Soda-
Lime Glass. The theta axis is the angle relative to the im-
pact location in radians.

Certainly, a completely realistic simulation of the seis-
mic consequences of celestial collisions is well beyond the
scope of this paper. Nevertheless, here a a simple, analyt-
ical model of a wave traveling across damped spherical
surface is proposed that could be applied to these earth-
shattering problems. While imperfect, this model still
demonstrates basic dynamics of seismic events, like the
importance of soil types, and can be used as a starting point
or reference for future investigations.
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5 Appendix: Matlab Figure and
Video Generation Code

clear; clc; close all;

%% User settings

%video export
videoFilename = 'asteroid_impact'; %

Name of the file (no extension
needed here)

fps = 30; %
Frames Per Second

videoTime = 3; %
Number of seconds for video.

makeVideo = false; %
Toggle video generation for model.

saveplot = true;

% realistic parameters
R = 6371000; %radius of sphere

mu = 4500; %reyleigh wave velocity in
crust, "Jeffreys -Bullen A" earth

model. m/s

%derrive damping from Seismic Quality
Factor (100-300 for upper mantle/
surface waves)

Q = 21; %160: Anderson and Kovach
results from Knopoff. %21:
sandstone , 1450: silica, which is
a large portion of the earths
crust. 1340: soda lime glass

freq = 1/200; % wave frequency , as a
function of reighley wave period,
Knopoff. (75-300 seconds, Ben-
Menahem, as mentioned by Knopoff).

Gamma = pi*freq/(Q*mu^2); %derrived
from Knopoff

tspan = [0, 3*pi*R/mu]; %1.5 cycles
with low damping.

timestep = tspan(2)/(fps*videoTime);
nTerms = 50; %number of terms in

approximation

S = .1; %dirac delta scalar term.
NumPtsTheta = 360*2; %number of points

around circle to calculate

% % toy parameters for testing:
% R = 1; %radius of sphere
% Gamma = 0.05; %damping is small so

the system will be underdamped ,
creating oscilating waves.

% mu = 3; %wave velocity , speed of
sound in rock.

% tspan = [0,3];
% timestep = 1/fps;
% nTerms = 50; %number of terms in

approximation
% S = 1; %dirac delta scalar term.
% NumPtsTheta = 360; %number of points

around circle to calculate

%analysis variables
ts = (tspan(1):timestep:tspan(2)); %in

hours
th = linspace(0,2*pi,NumPtsTheta);

%truncation adjustment parameter
sigma = 0.1; % apply smoothing to

reduce artifacts from Gibbs
phenomena. This effectively widens
the impulse from a point to an

area.

%infinite series solution:
sol = zeros(length(th), length(ts));
for i = 1:length(ts)

t = ts(i);
for n = 0:nTerms

%Initial displacement method
if (mu^4*Gamma^2 > n*mu^2/R^2)

%real solution in laplace
domain

%roots of denominator
r = [

-Gamma*mu^2 + sqrt(
Gamma^2*mu^4 - (n
^2*mu^2/R^2));
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-Gamma*mu^2 - sqrt(
Gamma^2*mu^4 - (n
^2*mu^2/R^2));

];
d = 2*Gamma*mu^2;
u_n = S*cos(n*th)./(r(2)-r

(1))*((d-r(1))*exp(r
(1)*t) - (d-r(2))*exp(
r(2)*t));

else
%complex solution from

completing squares (
forcing equation

%into sine and cosine
laplace versions for
inverse transformation
.

a = Gamma*mu^2;
b = sqrt((n^2*mu^2/R^2) -

(Gamma*mu^2)^2);
u_n = S*cos(n*th) * ( exp

(-a*t)*cos(b*t) + ((a/
b)*exp(-a*t)*sin(b*t))
);

end

%gausian filter to reduce
gibbs phenomena from
solution

smoothing_factor = exp(-0.5 *
(n * sigma)^2);

u_n = u_n * smoothing_factor;

%account for different n = 0
term.

if n == 0
sol(:,i) = sol(:,i) +

(1/2/pi)*(u_n)';
else

sol(:,i) = sol(:,i) + (1/
pi)*(u_n)';

end
end

end

f = figure;

[X, Y] = meshgrid(th, ts/3600);
surf(X,Y,sol')
xlabel('Theta')
xlim([0, 2*pi])
ylabel('Time (Hours)')
zlabel('Wave Size')
view(45,135)
shading interp;
theme(f,'light')
set(gca,'color','white')
f.Color = 'w'; %Set background color

of figure window
ax = gca;
ax.LineWidth = 2;
ax.GridLineWidth = 1.5;

if saveplot
saveas(f,['AsteroidImpactTimeQ_'

num2str(Q)],'fig')
saveas(f,['AsteroidImpactTimeQ_'

num2str(Q)],'png')
end

if makeVideo
pause;
close(f);

else
return;

end

%% create video (from AI)
% code from gemini to change

coordinates and make video.
% --- 6. Visualization Scaling ---
max_wave = max(max(abs(sol)));
if max_wave == 0, max_wave = 1; end
visual_scale_factor = (0.2 * R) /

max_wave;

fprintf('Step 2/3: Setting up Video
Writer...\n');

f = figure('Color','white', 'Position'
, [100 100 800 600], 'Visible', '
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off');
theme(f, "light");

% Setup Sphere Mesh
n_res = 60;
[Phi, Theta] = meshgrid(linspace(0, pi

, n_res), linspace(0, 2*pi, n_res)
);

% Initialize Base Sphere
X_base = R .* sin(Phi) .* cos(Theta);
Y_base = R .* sin(Phi) .* sin(Theta);
Z_base = R .* cos(Phi);
h = surf(X_base, Y_base, Z_base);

% Styling
axis equal;
limit = R * 1.5;
axis([-limit limit -limit limit -limit

limit]);
grid off; box on;
xlabel('X'); ylabel('Y'); zlabel('Z');
shading interp;
lighting gouraud;
light('Position',[1 1 1]);
colormap jet;
view(3);

% --- 8. Create Video Writer Object
---

v = VideoWriter(videoFilename , 'MPEG-4
');

v.FrameRate = fps;
open(v);

% --- 9. Render and Write Frames ---
fprintf('Step 3/3: Rendering Frames

(0%%) ');
num_frames = length(ts);

for i = 1:num_frames

% Physics Mapping
current_wave = sol(:, i);
displacement = interp1(th,

current_wave , Phi, 'linear',

0);
R_dynamic = R + (displacement *

visual_scale_factor);

X = real(R_dynamic .* sin(Phi) .*
cos(Theta));

Y = real(R_dynamic .* sin(Phi) .*
sin(Theta));

Z = real(R_dynamic .* cos(Phi));

% Update Figure Data
set(h, 'XData', X, 'YData', Y, '

ZData', Z, 'CData',
displacement);

title(['Asteroid Impact: t = '
num2str(ts(i)/3600, '%.2f') '
Hours']);

% Capture the frame
frame = getframe(f);
writeVideo(v, frame);

% Simple progress bar
if mod(i, 20) == 0

fprintf('\b\b\b\b\b%3.0f%%)',
(i/num_frames)*100);

end
end

close(v); % Finish the video file
close(f); % Close the hidden figure
fprintf('\nDone! Video saved as "%s.

mp4"\n', videoFilename);
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