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ABSTRACT 
 

Previous 1-D stone-skipping models neglect radial energy decay 

and source geometry. This study models a 2-D circular domain 

using the Polar Wave Equation. Fourier-Bessel series solutions 

are derived to analyze two Gaussian initial conditions: a 

localized "Pebble" (σ2 = 0.05) and a distributed "Boulder" 

(σ2 = 5.0). The localized impact generated a high-frequency 

dispersive ripple, whereas the distributed impact acted as a 

geometric low-pass filter, producing a coherent, non-dispersive 

swell. Results demonstrate that impactor size dictates the 

wavefront's spectral composition and that 2-D geometry is 

required to capture physical amplitude attenuation. 

NOMENCLATURE 
 

𝑢(𝑟, 𝑡): Vertical surface displacement [m] 

 

𝑟, θ: Polar spatial coordinates [m, rad] 

 

R: Radius of the fluid domain (10 m) 

 

c: Wave propagation speed (1 m/s) 

 

𝜎2: Spatial variance of the impactor [𝑚2] 

 

𝐽0: Bessel function of the first kind, order zero 

 

𝜆𝑛: Eigenvalues satisfying boundary conditions 

 

𝐴𝑛: Fourier-Bessel series coefficients 

 

 

INTRODUCTION 
 

In a previous paper, Nyborg (2023) modeled a stone skipping 

across a pond to explore wave interactions with different 

boundary conditions. This was done by modeling the surface of 

the pond with a one-dimensional wave equation and using Dirac 

Delta Functions to simulate the stone impacting the water at 

different points. Nyborg’s model successfully showed how 

boundary conditions impact wave reflection.  

 

A drawback of the one-dimensional model is that it does not 

account for radial energy decay and assumes waves maintain 

constant amplitude as they travel. Additionally, using the Dirac 

Delta Function to simulate the stone models the stone as a point 

source. In physical stone skipping scenarios, the “sharpness” of 

the impact plays an important role in determining the spectral 

content of the wave formation. The purpose of this paper is to 

explore the effect of impact sharpness or “stone size” on the 

resulting wavefront by modeling two different sized stones, 

approximated as Gaussian distributions. To isolate the impact of 

“stone size” from the complex kinematics of a skipping stone, 

the impact is modeled as a stationary axisymmetric event.  

 

 

METHODS 
 

To model the vertical displacement the two-dimensional Polar 

Wave Equation is used. To isolate the effect of the impact 

geometry on the resulting wave, it is assumed that the system is 

axisymmetric. Physically this would represent a stone being 

dropped in the middle of a pond, rather than a stone being 

skipped across the surface. This assumption results in equation 

1.   

 

∂2𝑢

∂𝑡2
= 𝑐2 (

∂2𝑢

∂𝑟2
+

1

𝑟

∂𝑢

∂𝑟
) (1) 

 

Boundary Conditions  

1 u(R, t) = 0  (fixed rim) 

2 |u(0, t)| < ∞ (finite center) 

 

Similar to Nyborg’s model, Dirichlet conditions are applied at 

the perimeter R=10. The second needed boundary condition is 

that the center must be finite to simulate a real pond.  
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Solution Strategy 

Assuming the solution can be factored into two independent 

spatial and time components results in equation (2). 

 

𝑢(𝑟, 𝑡) =  𝜙(𝑟)ℎ(𝑡) (2) 

 

Using the separation of variables and substituting equation 2 into 

equation 1 results in two ordinary differential equations that act 

as Sturm-Liouville problems linked by the separation 

constant−𝜆2. 

Time:  h′′(t)  +  c2 λ2 h(t)  =  0 (3) 

 

Space: ϕ′′(𝑟) +
1

𝑟
ϕ′(𝑟) + λ2ϕ(𝑟) = 0 (4) 

 

Equation (4) is Bessel’s Differential Equation of order 0. The 

known general solution to this is ϕ(𝑟) = 𝐶1𝐽0(λ𝑟) + 𝐶2𝑌0(λ𝑟) 

and by applying the finiteness boundary condition it is found that 

𝐶2 = 0 because 𝑌0 → −∞. The 𝑢(𝑅, 𝑡) = 0 condition means 

𝐽0(λ𝑅) = 0 which is used to find discrete eigenvalues 𝜆𝑛. 

 

Equation (3) is a simple harmonic oscillator. 𝑡 =  0 is defined as 

the moment of maximum cavity formation made by the rock 

where the fluid is momentarily stationary before rebounding 

(𝑢𝑡(𝑟, 0) = 0). This means the sine term disappears resulting in 

ℎ(𝑡) ∝ cos(ω𝑛𝑡). 

 

Superimposing these solutions results in a Fourier-Bessel series 

solution for displacement u(r,t). 

𝑢(𝑟, 𝑡) = ∑ 𝐴𝑛𝐽0(λ𝑛𝑟)

∞

𝑛=1

cos(ω𝑛𝑡) (5) 

Initial Conditions 

 

The depression left by the impactor is approximated as an 

inverted Gaussian function (6) where σ2 represents the effective 

radius of the impactor.  

 

𝑓(𝑟) = −𝑒
−

𝑟2

σ2 (6) 

 

 By making two cases, the effect of size can be compared  

Case A (Pebble): A narrow variance (σ2 = 0.05) 

approximating Nyborg’s point source. 

Case B (Boulder): A wide variance (σ2 = 5.0) 

representing a distributed displacement.  

 

The 𝐴𝑛coefficients were calculated numerically by projecting 

these Gaussian shapes into the Bessel function basis by using the 

orthogonality property of Bessel functions with respect to weight 

r.   

𝐴𝑛 =
∫ 𝑓(𝑟)𝐽0(λ𝑛𝑟)𝑟

𝑅

0
 𝑑𝑟

∫ [𝐽0(λ𝑛𝑟)]2𝑟
𝑅

0
 𝑑𝑟

=
2

𝑅2[𝐽1(λ𝑛𝑅)]2
∫ 𝑓(𝑟)𝐽0(λ𝑛𝑟)𝑟

𝑅

0

 𝑑r (7) 

 

 

RESULTS 
 

 
Figure 1. Comparison of normalized Fourier-Bessel coefficients 

(𝐴𝑛) versus mode number (n). 

 

Figure 1 illustrates the spectral impact of source geometry. 

While the pebble projects significant energy into high-order 

Bessel modes (n > 20), the boulder coefficients decay rapidly, 

effectively acting as a geometric low-pass filter that suppresses 

high-frequency content. 

 

The analytical Fourier-Bessel series solution was calculated 

using the first 50 Bessel modes. This was required because the 

high frequency wave made by the pebble requires many Bessel 

modes to be properly represented. The simulation had a domain 

of R = 10 m and a speed of c = 1m/s. The figures below show the 

wave 4 seconds after the cavity made by the stone would be at 

its maximum.  

 

 
Figure 2. The 3D surface topology at t=4s. The "Pebble" (Left) 

exhibits a sharp, distinct ring, while the "Boulder" (Right) 

exhibits a single smooth swell. 

 

 
Figure 3. The radial amplitude at t=4s. When viewed over time 

amplitude decay is demonstrated.  
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To verify the energy attenuation (radial decay) of the model, the 

wavefront propagation was tracked over time. 

 
Figure 4. Comparison of wavefront displacement over time for 

an observer at 2m versus 8m. The wave height decreases 

significantly as it travels outward, illustrating radial decay. 

 

CONCLUSIONS 
 

The pebble simulates Nyborg’s Dirac Delta Function. This high 

frequency wave excites high order Bessel modes and makes a 

noisy wave. This study focuses on the wave front but if there 

were multiple waves this noise would impact the wave 

interactions. The large boulder geometry makes a wave that is 

smooth and coherent because it does not excite high order Bessel 

modes. This confirms that the impactor’s geometry acts as a 

spectral filter, demonstrating that impact size, not just intensity, 

is crucial to wave formation. 

 

This model also shows radial energy decay. Unlike the one-

dimensional model, this two-dimensional radial model 

demonstrates amplitude attenuation more consistent with 

physical energy conservation. Applying radial decay to a study 

like Nyborg’s would help increase the realism.  

 

However, while radial decay is present, this model still relies on 

simplified assumptions that impact its realism. The stone is 

simulated as a static initial displacement of the water. Physically, 

a dynamic impact involves complex cavity formation and 

secondary splash dynamics that generate wave trains. 

Additionally, the assumption of axisymmetry was used to reduce 

computational complexity. Future work could improve upon this 

by introducing angular dependence to simulate non-vertical 

impacts and off-center source terms to capture asymmetric 

reflections. 
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APPENDIX 
 

Python code used for simulation. 

 

import numpy as np 

import matplotlib.pyplot as plt 

from mpl_toolkits.mplot3d import Axes3D 

from scipy.special import j0, j1, jn_zeros 

 

# --- PARAMETERS --- 

R = 10.0          # Radius of pond 

c = 1.0           # Wave speed 

N_modes = 50      # Number of Bessel modes 

time_to_plot = 4.0 # Time snapshot 

 

# --- MATH SETUP --- 

roots = jn_zeros(0, N_modes) 

lambdas = roots / R 

omegas = c * lambdas 

 

# Integration function for coefficients An 

def calculate_An(func_shape): 

    A_n = [] 

    r_int = np.linspace(0, R, 1000) 

    dr = r_int[1] - r_int[0] 

    for n in range(N_modes): 

        lam = lambdas[n] 

        # Integral: f(r) * J0(lambda*r) * r 

        integrand = func_shape(r_int) * j0(lam * r_int) * r_int 

        integral_val = np.sum(integrand) * dr 

        norm_factor = 2 / ((R**2) * (j1(lam * R)**2)) 

        A_n.append(norm_factor * integral_val) 

    return np.array(A_n) 

 

# --- DEFINE SHAPES (The "Dent") --- 

# Negative Gaussian to simulate a crater/cavity 

pebble_shape = lambda r: -1.0 * np.exp(-(r)**2 / 0.05) 

boulder_shape = lambda r: -1.0 * np.exp(-(r)**2 / 5.0) 

 

# Calculate Coefficients 

An_pebble = calculate_An(pebble_shape) 

An_boulder = calculate_An(boulder_shape) 

 

# --- PLOTTING DATA GENERATION --- 

# 1. Line Data (for 2D Plot) 

r_line = np.linspace(0, R, 400) 

u_pebble_line = np.zeros_like(r_line) 

u_boulder_line = np.zeros_like(r_line) 

 

for n in range(N_modes): 

    time_part = np.cos(omegas[n] * time_to_plot) 

    spatial_part = j0(lambdas[n] * r_line) 

    u_pebble_line += An_pebble[n] * spatial_part * 

time_part 

    u_boulder_line += An_boulder[n] * spatial_part * 

time_part 
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# 2. Surface Data (for 3D Plot) 

# Create Cartesian grid 

x = np.linspace(-R, R, 100) 

y = np.linspace(-R, R, 100) 

X, Y = np.meshgrid(x, y) 

R_grid = np.sqrt(X**2 + Y**2) 

R_grid[R_grid > R] = np.nan # Mask outside 

 

Z_pebble = np.zeros_like(R_grid) 

Z_boulder = np.zeros_like(R_grid) 

 

# Sum modes for 3D 

for n in range(N_modes): 

    time_part = np.cos(omegas[n] * time_to_plot) 

    # Use J0 on the 2D grid 

    # We use numpy.nan_to_num to handle the masked NaNs 

safely during calc 

    spatial_part = j0(lambdas[n] * np.nan_to_num(R_grid))  

    Z_pebble += An_pebble[n] * spatial_part * time_part 

    Z_boulder += An_boulder[n] * spatial_part * time_part 

     

# Restore NaNs for plotting transparency 

Z_pebble[np.isnan(R_grid)] = np.nan 

Z_boulder[np.isnan(R_grid)] = np.nan 

 

 

# --- Figure 1: Spectral Content Plot --- 

plt.figure(figsize=(10, 5)) 

modes = np.arange(N_modes) 

 

# Plotting An coefficients (Absolute value to show 

magnitude) 

plt.bar(modes - 0.2, 

np.abs(An_pebble)/np.max(np.abs(An_pebble)), width=0.4, 

label='Pebble (High Frequency)') 

plt.bar(modes + 0.2, 

np.abs(An_boulder)/np.max(np.abs(An_boulder)), width=0.4, 

label='Boulder (Low Frequency)') 

 

plt.xlabel('Mode Number (n)') 

plt.ylabel('Normalized Amplitude |An|') 

plt.title('Spectral Content: Comparison of Modal 

Excitation') 

plt.legend() 

plt.grid(True, alpha=0.3) 

plt.show() 

 

 

# --- FIGURE 2: 3D SURFACE COMPARISON --- 

fig1 = plt.figure(figsize=(14, 6)) 

 

ax1 = fig1.add_subplot(121, projection='3d') 

ax1.plot_surface(X, Y, Z_pebble, cmap='viridis', 

edgecolor='none') 

ax1.set_title(f'Case A: Pebble Impact (High 

Variance)\nt={time_to_plot}s') 

ax1.set_zlim(-0.5, 0.5) 

 

ax2 = fig1.add_subplot(122, projection='3d') 

ax2.plot_surface(X, Y, Z_boulder, cmap='plasma', 

edgecolor='none') 

ax2.set_title(f'Case B: Boulder Impact (Low 

Variance)\nt={time_to_plot}s') 

ax2.set_zlim(-0.5, 0.5) 

 

plt.tight_layout() 

plt.show() 

 

# --- FIGURE 3: 2D RADIAL PROFILE --- 

fig2, (ax3, ax4) = plt.subplots(1, 2, figsize=(12, 5)) 

 

ax3.plot(r_line, u_pebble_line, 'b-', lw=2) 

ax3.set_title("Radial Profile: Pebble") 

ax3.set_xlabel("Radius (m)") 

ax3.set_ylabel("Displacement (m)") 

ax3.grid(True) 

ax3.set_ylim(-0.5, 0.5) 

 

ax4.plot(r_line, u_boulder_line, 'r-', lw=2) 

ax4.set_title("Radial Profile: Boulder") 

ax4.set_xlabel("Radius (m)") 

ax4.grid(True) 

ax4.set_ylim(-0.5, 0.5) 

 

plt.tight_layout() 

plt.show() 

 

 

 

# --- FIGURE 4: Radial Decay Demonstration --- 

time_points = np.linspace(0, 10, 300) 

r_near = 2.0  # Observer near the center 

r_far = 8.0   # Observer near the edge 

 

u_pebble_near = [] 

u_pebble_far = [] 

 

# Calculate time series at two distinct points 

for t in time_points: 

    val_near = 0 

    val_far = 0 

    for n in range(N_modes): 

        time_part = np.cos(omegas[n] * t) 

         

        # Near Observer 

        val_near += An_pebble[n] * j0(lambdas[n] * r_near) * 

time_part 

         

        # Far Observer 

        val_far += An_pebble[n] * j0(lambdas[n] * r_far) * 

time_part 

         

    u_pebble_near.append(val_near) 

    u_pebble_far.append(val_far) 
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# Plotting 

plt.figure(figsize=(10, 5)) 

plt.plot(time_points, u_pebble_near, 'b-', label='Near 

Source (r=2m)', linewidth=1.5) 

plt.plot(time_points, u_pebble_far, 'b--', label='Far Field 

(r=8m)', linewidth=1.5, alpha=0.6) 

 

plt.title("Radial Energy Decay: Near vs. Far Field 

Comparison (Pebble)") 

plt.xlabel('Time (s)') 

plt.ylabel('Vertical Displacement (m)') 

plt.legend() 

plt.grid(True, alpha=0.3) 

 

# Add an arrow or text to highlight the decay 

peak_near = max(u_pebble_near) 

peak_far = max(u_pebble_far) 

plt.annotate('Amplitude Attenuation', xy=(8, peak_far), 

xytext=(5, peak_near), 

             arrowprops=dict(facecolor='black', shrink=0.05)) 

 

plt.show() 


