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ABSTRACT

Previous 1-D stone-skipping models neglect radial energy decay
and source geometry. This study models a 2-D circular domain
using the Polar Wave Equation. Fourier-Bessel series solutions
are derived to analyze two Gaussian initial conditions: a
localized "Pebble" (o2 = 0.05) and a distributed "Boulder"
(0?2 = 5.0). The localized impact generated a high-frequency
dispersive ripple, whereas the distributed impact acted as a
geometric low-pass filter, producing a coherent, non-dispersive
swell. Results demonstrate that impactor size dictates the
wavefront's spectral composition and that 2-D geometry is
required to capture physical amplitude attenuation.

NOMENCLATURE
u(r, t): Vertical surface displacement [m]
7, 8: Polar spatial coordinates [m, rad]
R: Radius of the fluid domain (10 m)
c: Wave propagation speed (1 m/s)
o?: Spatial variance of the impactor [m?]
Jo: Bessel function of the first kind, order zero
A, Eigenvalues satisfying boundary conditions

A, : Fourier-Bessel series coefficients

INTRODUCTION

In a previous paper, Nyborg (2023) modeled a stone skipping
across a pond to explore wave interactions with different
boundary conditions. This was done by modeling the surface of
the pond with a one-dimensional wave equation and using Dirac
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Delta Functions to simulate the stone impacting the water at
different points. Nyborg’s model successfully showed how
boundary conditions impact wave reflection.

A drawback of the one-dimensional model is that it does not
account for radial energy decay and assumes waves maintain
constant amplitude as they travel. Additionally, using the Dirac
Delta Function to simulate the stone models the stone as a point
source. In physical stone skipping scenarios, the “sharpness” of
the impact plays an important role in determining the spectral
content of the wave formation. The purpose of this paper is to
explore the effect of impact sharpness or “stone size” on the
resulting wavefront by modeling two different sized stones,
approximated as Gaussian distributions. To isolate the impact of
“stone size” from the complex kinematics of a skipping stone,
the impact is modeled as a stationary axisymmetric event.

METHODS

To model the vertical displacement the two-dimensional Polar
Wave Equation is used. To isolate the effect of the impact
geometry on the resulting wave, it is assumed that the system is
axisymmetric. Physically this would represent a stone being
dropped in the middle of a pond, rather than a stone being
skipped across the surface. This assumption results in equation

1.
0%u o, 62u+ 10u L
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Boundary Conditions
1u(R,t)=0 (fixed rim)
2 |u(0, t)| < oo (finite center)

Similar to Nyborg’s model, Dirichlet conditions are applied at

the perimeter R=10. The second needed boundary condition is
that the center must be finite to simulate a real pond.
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Solution Strategy
Assuming the solution can be factored into two independent
spatial and time components results in equation (2).

u(r,t) = ¢(r)h(t) (2)

Using the separation of variables and substituting equation 2 into
equation 1 results in two ordinary differential equations that act

as Sturm-Liouville problems linked by the separation
constant—A2,
Time: h"® + ¢2A%2h(t) = 0 3)
1
Space: ¢"'(r) + ;d)’(r) +A2p(r) =0 4

Equation (4) is Bessel’s Differential Equation of order 0. The
known general solution to this is ¢(r) = C1Jo(Ar) + C,Y,(Ar)
and by applying the finiteness boundary condition it is found that
C, = 0 because Yy » —oo. The u(R,t) = 0 condition means
Jo(AR) = 0 which is used to find discrete eigenvalues A,,.

Equation (3) is a simple harmonic oscillator. t = 0 is defined as
the moment of maximum cavity formation made by the rock
where the fluid is momentarily stationary before rebounding
(us(r,0) = 0). This means the sine term disappears resulting in
h(t) o cos(wy,t).

Superimposing these solutions results in a Fourier-Bessel series
solution for displacement u(r,t).
(o)

u(r,6) = ) AyJoOnr) cos(wyt) )

Initial Conditions

The depression left by the impactor is approximated as an
inverted Gaussian function (6) where o? represents the effective
radius of the impactor.

fG) = -0 ©)

By making two cases, the effect of size can be compared

Case A (Pebble): A narrow variance (o2 = 0.05)
approximating Nyborg’s point source.

Case B (Boulder): A wide variance (o? = 5.0)
representing a distributed displacement.

The A, coefficients were calculated numerically by projecting
these Gaussian shapes into the Bessel function basis by using the
orthogonality property of Bessel functions with respect to weight
r.

R f@L G dr 2
" Qe dr - RELOWRIP

R
j F o Onr)r dr (7)
0
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RESULTS

Spectral Content: Comparison of Modal Excitation
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Figure 1. Comparison of normalized Fourier-Bessel coefficients
(A,) versus mode number (n).

Figure 1 illustrates the spectral impact of source geometry.
While the pebble projects significant energy into high-order
Bessel modes (n > 20), the boulder coefficients decay rapidly,
effectively acting as a geometric low-pass filter that suppresses
high-frequency content.

The analytical Fourier-Bessel series solution was calculated
using the first 50 Bessel modes. This was required because the
high frequency wave made by the pebble requires many Bessel
modes to be properly represented. The simulation had a domain
of R =10 m and a speed of ¢ = 1m/s. The figures below show the
wave 4 seconds after the cavity made by the stone would be at
its maximum.

Case A: Pebble Impact (High Variance} Case B: Boulder Impact (Low Variance)
=405 =405

Figure 2. The 3D surface topology at t=4s. The "Pebble" (Left)
exhibits a sharp, distinct ring, while the "Boulder" (Right)

exhibits a single smooth swell.
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Figure 3. The radial amplitude at t=4s. When viewed over time
amplitude decay is demonstrated.
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To verify the energy attenuation (radial decay) of the model, the
wavefront propagation was tracked over time. APPENDIX

Radial Energy Decay: Near vs. Far Field Comparison (Pebble)
Amplitude Attenuation

Python code used for simulation.

import numpy as np

import matplotlib.pyplot as plt

from mpl_toolkits.mplot3d import Axes3D
v from scipy.special import jO, j1, jn_zeros

Vertical Displacement (m)

# --- PARAMETERS ---

. — Near Source (r=2m) R=10.0 # Radius of pond
R . . . . bl Er:mm c=1.0 # Wave speed
Time (5) N _modes =50  # Number of Bessel modes
Figure 4. Comparison of wavefront displacement over time for time to plot =4.0 # Time snapshot
an observer at 2m versus 8m. The wave height decreases
significantly as it travels outward, illustrating radial decay. # --- MATH SETUP ---
roots = jn_zeros(0, N_modes)

CONCLUSIONS lambdas = roots / R

omegas = ¢ * lambdas
The pebble simulates Nyborg’s Dirac Delta Function. This high

frequency wave excites high order Bessel modes and makes a # Integration function for coefficients An
noisy wave. This study focuses on the wave front but if there def calculateAn(func_shape):
were multiple waves this noise would impact the wave A n=[]
interactions. The large boulder geometry makes a wave that is r_int = np.linspace(0, R, 1000)
smooth and coherent because it does not excite high order Bessel dr=r_int[1] - r_int[0]
modes. This confirms that the impactor’s geometry acts as a for n in range(N_modes):
spectral filter, demonstrating that impact size, not just intensity, lam = lambdas[n]
is crucial to wave formation. # Integral: f(r) * JO(lambda*r) * r

integrand = func_shape(r_int) * jO(lam * r_int) * r_int
This model also shows radial energy decay. Unlike the one- integral val = np.sum(integrand) * dr
dimensional model, this two-dimensional radial model norm_factor =2/ (R**2) * (j1(lam * R)**2))
demonstrates amplitude attenuation more consistent with A n.append(norm_factor * integral val)
physical energy conservation. Applying radial decay to a study return np.array(A_n)

like Nyborg’s would help increase the realism.
# --- DEFINE SHAPES (The "Dent") ---

However, while radial decay is present, this model still relies on # Negative Gaussian to simulate a crater/cavity
simplified assumptions that impact its realism. The stone is pebble_shape = lambda r: -1.0 * np.exp(-(r)**2 / 0.05)
simulated as a static initial displacement of the water. Physically, boulder_shape = lambda r: -1.0 * np.exp(-(r)**2 / 5.0)
a dynamic impact involves complex cavity formation and
secondary splash dynamics that generate wave trains. # Calculate Coefficients
Additionally, the assumption of axisymmetry was used to reduce An_pebble = calculate_An(pebble_shape)
computational complexity. Future work could improve upon this An_boulder = calculate_An(boulder_shape)
by introducing angular dependence to simulate non-vertical
impacts and off-center source terms to capture asymmetric # --- PLOTTING DATA GENERATION ---
reflections. # 1. Line Data (for 2D Plot)

r_line = np.linspace(0, R, 400)
REFERENCES u_pebble_line = np.zeros_like(r line)

u_boulder line = np.zeros_like(r line)
[1] Nyborg, C., 2023, "Analysis of a Stone Skipping Across the

Surface of Water," Journal of Applied Engineering for n in range(N_modes):
Mathematics, 10, pp. 1-2. time_part = np.cos(omegas[n] * time _to_plot)
[2] Solovjov, V., "Integrated Engineering Mathematics," spatial part = jO(lambdas[n] * r_line)
Chapter VII, Section 6 (Bessel Functions & Fourier-Bessel u_pebble line += An_pebble[n] * spatial part *
Series) time part
u_boulder line += An_boulder[n] * spatial part *
time part
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# 2. Surface Data (for 3D Plot)

# Create Cartesian grid

x = np.linspace(-R, R, 100)

y = np.linspace(-R, R, 100)

X, Y = np.meshgrid(x, y)

R_grid = np.sqrt(X**2 + Y**2)

R _grid[R grid > R] = np.nan # Mask outside

Z pebble =np.zeros_like(R_grid)
Z boulder = np.zeros_like(R grid)

# Sum modes for 3D
for n in range(N_modes):
time part = np.cos(omegas[n] * time to plot)
# Use JO on the 2D grid
# We use numpy.nan_to_num to handle the masked NaNs
safely during calc
spatial_part = jO(lambdas[n] * np.nan_to_num(R_grid))
Z pebble += An_pebble[n] * spatial part * time part
Z boulder += An_boulder[n] * spatial part * time part

# Restore NaNs for plotting transparency
Z pebble[np.isnan(R_grid)] = np.nan
Z boulder[np.isnan(R_grid)] = np.nan

# --- Figure 1: Spectral Content Plot ---
plt.figure(figsize=(10, 5))
modes = np.arange(N_modes)

# Plotting An coefficients (Absolute value to show
magnitude)

plt.bar(modes - 0.2,
np.abs(An_pebble)/np.max(np.abs(An_pebble)), width=0.4,
label="Pebble (High Frequency)')

plt.bar(modes + 0.2,
np.abs(An_boulder)/np.max(np.abs(An_boulder)), width=0.4,
label='"Boulder (Low Frequency)")

plt.xlabel('"Mode Number (n)")
plt.ylabel('Normalized Amplitude |An|")

plt.title('Spectral ~ Content: ~ Comparison of Modal
Excitation')

plt.legend()

plt.grid(True, alpha=0.3)

plt.show()

# --- FIGURE 2: 3D SURFACE COMPARISON ---
figl = plt.figure(figsize=(14, 6))

ax] = figl.add subplot(121, projection="3d")

axl.plot surface(X, Y, Z pebble,
edgecolor="none")

axl.set_title(fCase A: Pebble
Variance)\nt={time _to plot}s')

axl.set_zlim(-0.5, 0.5)

cmap="viridis',

Impact (High
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ax2 = figl.add subplot(122, projection='3d")

ax2.plot surface(X, Y, Z boulder, cmap="plasma’,
edgecolor="none")
ax2.set title(fCase = B:  Boulder  Impact  (Low

Variance)\nt={time to plot}s')
ax2.set_zlim(-0.5, 0.5)

plt.tight_layout()
plt.show()

# --- FIGURE 3: 2D RADIAL PROFILE ---
fig2, (ax3, ax4) = plt.subplots(1, 2, figsize=(12, 5))

ax3.plot(r_line, u pebble line, 'b-', Iw=2)
ax3.set_title("Radial Profile: Pebble")
ax3.set xlabel("Radius (m)")
ax3.set_ylabel("Displacement (m)")
ax3.grid(True)

ax3.set_ylim(-0.5, 0.5)

ax4.plot(r_line, u_boulder line, 'r-', Iw=2)
ax4.set_title("Radial Profile: Boulder™)
ax4.set xlabel("Radius (m)")
ax4.grid(True)

ax4.set_ylim(-0.5, 0.5)

plt.tight _layout()
plt.show()

# --- FIGURE 4: Radial Decay Demonstration ---
time_points = np.linspace(0, 10, 300)

r_near =2.0 # Observer near the center

r far=8.0 # Observer near the edge

u_pebble near =[]
u_pebble far =[]

# Calculate time series at two distinct points
for t in time_points:
val near =0
val far=0
for n in range(N_modes):
time part = np.cos(omegas[n] * t)

# Near Observer
val near += An_pebble[n] * jO(lambdas[n] * r _near) *
time_part

# Far Observer
val far += An_pebble[n] * jO(lambdas[n] * r far) *

time part

u_pebble near.append(val near)
u_pebble far.append(val far)
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# Plotting
plt.figure(figsize=(10, 5))
plt.plot(time_points, u_pebble near, 'b-', label='Near
Source (r=2m)', linewidth=1.5)
plt.plot(time_points, u_pebble far, 'b--', label='"Far Field
(r=8m)', linewidth=1.5, alpha=0.6)

plttitle("Radial Energy Decay: Near vs. Far Field
Comparison (Pebble)")

plt.xlabel('Time (s)")

plt.ylabel("Vertical Displacement (m)")

plt.legend()

plt.grid(True, alpha=0.3)

# Add an arrow or text to highlight the decay
peak near = max(u_pebble near)
peak far = max(u_pebble far)
plt.annotate('Amplitude Attenuation', xy=(8, peak far),
xytext=(5, peak near),
arrowprops=dict(facecolor="black’, shrink=0.05))

plt.show()
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