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Abstract 

Upwelling currents are steady wind-driven ocean currents 

that occur near the coasts [1]. Their movement, although 

slow, is vital to local ocean dynamics and circulation. 

Here I use first principles to study the transient behavior 

of a slow upwelling current under a no-slip, constant shear 

configuration, representing the interaction of such a 

current with the ocean floor and a strong pycnocline (a 

thin, strongly stratified layer).  

This paper shows that the vertical location of the 

pycnocline is a dominant factor in the time-evolution of 

upwelling currents and dictates the point at which the 

boundary layer passes from a state independent of the 

shear rate to one highly sensitive to it. In this second 

regime, behavior is affected by the magnitude and 

direction of the shear, and the form of its evolution, both 

in shape and time, varies strongly.  

 

Figure 1: Wind-driven upwelling near the coast.[1] 

Credit: NOAA 

 

Nomenclature 

ui = Fluid Velocity (m/s) 

τ = Shear (Pa)  

µ = Dynamic Viscosity (Pa·s) 

ν = Kinematic Viscosity (m/s) 

ρ = Fluid Density (kg/m3) 

U0 = Current Velocity (m/s)  

h = Pycnocline Height (m)   

t = Time (s)  

a = Shear Rate τ / µ (s-1) 

Introduction 

The coastal ocean is perhaps one of the most fascinating 

and relevant topics in oceanography with relation to 

human and marine life. Steady, dominant drivers of ocean 

dynamics such as the tides, surface waves and inertial 

forces can and often do give way to smaller, more space 

and time-sensitive processes such as wind-driven 

upwelling, internal tides or the presence of a pycnocline. 

Although the effects produced by these processes are 

often small, it is important to thoroughly understand them 

as they can have disproportionate impacts on their 

surroundings.  

In this paper I investigate the time-dependance of a 

horizontal upwelling current through a decoupling 

strategy. Using the Navier-Stokes equations, I produce a 

simple analytical model that can help generalize trends 
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that occur during the dual-attenuation of a transient 

upwelling current due to interaction with the ocean floor 

and an upper pycnocline (Figure 2). I then use the model 

to investigate how the velocities near the ocean floor vary 

with shear and pycnocline elevation in time.  

Methodology 

 

Figure 2: Setup and Coordinate System 

A rectangular box of height h represents the area of study. 

Initially, a current U0 travels in the positive horizontal 

direction and passes through the front of the box. It is 

initially constant in y, and downstream effects are 

considered negligible. In this case, τ represents steady 

forcing on the upper wall of the current U0 from the 

bottom surface of the pycnocline. Physically, this could 

be produced by upwelling currents above it travelling in 

the opposite direction, or by other independent sources of 

forcing. 

For this study, I decouple the upwelling problem from 

other processes and focus on ui at x=0, effectively making 

it one-dimensional: ui=u. Then I assume typical Navier-

Stokes conditions and the following:   

1) Infinite in x, z 

2) Fully Developed Flow 

3) No Applied Pressure Gradient 

4) Neglecting Gravity 

5) (From Continuity) dv/dy=0, v=0 

6) Constant τ During Timeframe 

7) Viscous Diffusion has Minimal Effect on Flow 

 

This reduces the Navier-Stokes equation in x to: 

  

𝜌 (
𝜕𝑢

𝜕𝑡
) =  𝜇(

𝜕2𝑢

𝜕𝑦2
) 

 

This can be split into steady-state and transient 

components. I first solve the steady-state problem, using 

the following boundary conditions (BC) for u(y, t), 

where: 
𝜕2𝑢

𝜕𝑦2 = 0 

1) Initial Condition : u(y, 0) = 0 

2) Bottom BC (Dirichlet) : u(0, t) = 0 

3) Top BC: 
𝜕𝑢

𝜕𝑦
(ℎ, 𝑡) = 𝑎 

Separating and integrating reduces the steady state 

problem to:  

            𝑢(𝑦) = 𝑎𝑦 =  𝑢𝑠 

 

Where us is the steady state component of velocity. To 

solve the transient problem, I use separation of variables 

and Dirichlet/Neumann conditions for h, which yields 

the following:  

 
𝑇′

𝑇
= 𝜐

𝑌′′

𝑌
= −𝜆2 

𝑌′′ − 𝜆2𝑌 = 0 

𝑇′ − 𝜈𝜆2𝑇 = 0 

The eigenfunctions Yn(y), Tn(t) and eigenvalues 𝜆 can be 

easily shown to be: 

𝑌𝑛(𝑦) = sin ((𝑛 +
1

2
)

𝜋𝑦

ℎ
) for n=0,1,2… 

𝑇𝑛(𝑡) = 𝑒−𝜐𝜆𝑛
2 𝑡 for n=0,1,2… 

𝜆 = (𝑛 +
1

2
)

𝜋

ℎ
 

Combining the steady-state and transient solutions I find 

the final solution u(y,t):  

𝑢(𝑦, 𝑡) =  ∑ 𝐵𝑛sin ((𝑛 +
1

2
)

𝜋𝑦

ℎ
)𝑒

−𝜐((𝑛+
1
2

)
𝜋𝑦
ℎ )

2

𝑡
∞

𝑛=0

 

Where:  

𝐵𝑛 =
2

ℎ
∫ (𝑈0 − 𝑢𝑠)sin (

ℎ

0

(𝑛 +
1

2
)

𝜋𝑦

ℎ
)𝑑𝑦 

Variable Determination 

Values for the model are carefully chosen to enable a clear 

picture of the area of interest.   

Table 1: Values used in model 

 

 

  

 

 

Variable Value 

h 15-20m 

U0 1 mm/s 

ν 0.01 m2/s 

a -4·10-4 - 4·10-4 s-1 

x 

y 

h 
U0 

(1) 

(2) 

 (3) 

 (4) 

 (5) 
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The height of an upwelling current varies based on 

conditions and location. In this case, the range is kept 

within the same order of magnitude as that found in 

observational research [2]. Further consideration was 

given to this range as being a common depth for coral 

reefs and other structures vital to marine life. 

The value for a was selected based on the magnitude of 

U0, with the upper-bound for upwelling velocities being 

in the ~1 mm/s [3]. a is one order of magnitude smaller, 

representing either relatively weak forcing or a large 

pycnocline.  

Finally, ν was selected using the upper bound on 

turbulent eddy diffusion. [4] In using this value it should 

be acknowledged that actual timescales in the ocean 

would differ widely. In this case, this assumption is 

considered acceptable due to the focus on the decoupled 

problem even if these processes do not function 

independently.  

Results 

The model is first run with a=0 s-1, h=20 m (Figure 3) 

which yields a familiar profile across time and space. 

This profile shows initial attenuation by the bottom 

surface, but not by the top, as expected: 

  

Figure 3: Evolution of boundary layer with zero top shear at 

t=0 and t=4000s. The red line is the focus height y=5m.  

I then move on to the case of positive τ (Figure 4), which 

represents a current flowing above the pycnocline in the 

same direction as U0.  

 
   

Figure 4: Boundary layer evolution for a=2·10-4 s-1 (left) 

and a=4·10-4 s-1 (right). Note the axis change on the right. 

In both cases the profiles appear similar in shape. Dual 

attenuation occurs near the top and bottom surfaces, 

simultaneously, with rapid deterioration near the bottom 

surface, and a slower, logarithmic increase in velocity 

near the top. Both processes are effectively independent. 

While the bottom portion of the boundary layer can 

quickly reach a linear state and constant slope, as defined 

by the rate of diffusion, it is the slope of the shear that 

dictates the overall time required to achieve linear 

behavior. If there is mismatch in slope, the effects of the 

shear must diffuse all the way to the bottom to achieve a 

straight line, lengthening the process considerably (see 

video).  

I now move to the case of negative shear (Figure 5), which 

could represent a slower-moving current in the same 

direction or upper upwelling currents moving in the 

opposite direction. The profiles for both should look the 

same.  

Without pressure driven flow, the dominant upper current 

must completely reverse U0 through forcing to achieve 

equilibrium in u. While physical flows like this are likely 

rare, it is still interesting to see that there are certain 

regions in time that retain the bulk of the velocity, which 

are noted on the graph. For ease of visualization, the 

figures now show the top-down projection.  

 

Figure 5: Boundary layer evolution for a=-2·10-4 s-1 (left) 

and a=-4·10-4 s-1 (right). The velocity axis applies to both. 

Grey arrows show evolution of bulk velocity. 

 
Figure 6: Variation of ui (m/s) at y=5m with pycnocline 

height 20m for various shear rates a (1/s)  
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While these results are interesting, they are not 

particularly surprising. To get an idea of the trends in 

velocity u across time near the bottom, I combine the 

results and look specifically at the evolution at y=5m 

(Figure 6).  

 

Here it can be shown that ui remains unchanged until 

about ~1600s, irrespective of shear rate, a trend which 

remains consistent even at shear rates an order of 

magnitude larger. In this case it is simply because shear 

diffusion takes ~1600s to reach 5m at this height. Doing 

the same at 15 m (Figure 7), one finds the following:  

 
Figure 7: Variation of ui (m/s) at y=5m with pycnocline 

height 15m for various shear rates a (1/s)  

In this case diffusion is significantly more rapid and so is 

shear rate divergence.  

 

Conclusions 

This study has shown that a relatively strong upwelling 

current U0 bounded by the ocean floor and a pycnocline is 

sensitive to both the location of the pycnocline and the 

strength and direction of the upper shearing force. At 

locations near the ocean floor, the evolution of U0 can be 

split into two regimes, with the first being independent of 

the shear rate a, and the second being highly sensitive to 

it.  

For pycnocline elevations far above the floor, under more 

realistic conditions (slower U0, less diffusion etc), 

timescales for shear diffusion to the lower layer are likely 

exceptional even under large shear rates. With such small 

velocities it is unlikely that u(y,t) would remain free of 

outside influences. Other processes such as tidal forces, 

winds and currents would strongly affect upwelling far 

before the influence of upper forcing would diffuse to that 

point.  

This also shows that currents below pycnoclines are 

sensitive to the rate of shear. When the shear rate slope 

and that of the bottom no-slip condition match, timescales 

are minimized and the system rapidly moves towards a 

linear state. Mismatch in the slopes requires more time for 

the growing profile to take a shape that resembles steady-

state behavior, and negative shear changes both the shape 

of the profile and significantly increases the time for it to 

appear linear.  

Finally, due to the effects of diffusion, one can see that 

profiles in negative shear have elevations that retain much 

of the initial velocity for quite some time despite large 

changes near the top and bottom.  
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Appendix 

This includes the code and links to videos of the evolution 

of the boundary layer.  

 

Video:  

 

https://youtu.be/ORRy449c-EI  

 

Code:  

 

%% Part 1 - Calculating and Visualizing the Boundary 

Layer Evolution %% 

 

clear 

clf 

 

k = VideoWriter('Couette_TransientNegativeShear.mp4', 

'MPEG-4'); % Video Setup and Title 

k.FrameRate = 80;  

open(k);  

 

h=15; y=0:0.01:h; t=0:10:4000; % Variable definition 

and setup 

v=0.01; a=-0.0004; %-0.0002:0.0001:0.0002; 

figure(1); clf; hold on;  

h_plot = plot(0,0); 

u1=zeros(length(t), length(y));  

 

for i=1:length(t) % Calculates the boundary profile for 

all t 

    r=0; 

    t1=t(i); 

    u1(i,:) = a.*y; 

for n = 0:100 % Calculates the boundary profile for a 

given t with a large series 

        r1 = -(2000 * a * h * sin((2 * pi * n + pi) / 2) - 2 * 

pi * n - pi) / (250 * pi^2 * (2 * n + 1)^2);  

        r2 = sin((n+1/2)*pi*y/h);  

        r3 = exp(-v*((n+1/2)*pi/h)^2*t1);  

        r = r + r1.*r2.*r3;  

end 

 

    u1(i,:) = u1(i,:) + r;  

 

    xlabel('u (m/s)'); ylabel('y (m)'); ylim([0 h]); 

    xlim([-1.5E-3 1.5E-3]); % Manual Fix     

    grid on;  

    set(h_plot, 'XData', u1(i,:), 'YData', y); 

    drawnow;  

    title(sprintf('Transient Couette Flow, Negative Shear, t 

= %.1f s', t1)); 

 

    frame=getframe(gcf); % Adds frame to video 

    writeVideo(k, frame);  

 

end 

 

close(k);  

hold on; save('15_t.mat', 'u1', 't'); % Saves dataset for 

each iteration, title needs to be changed manually 

figure(1); idx = 1:101:length(y); 

quiver(zeros(size(y(idx)))', y(idx), u1(size(u1,1),idx), 

zeros(size(y(idx))), 0, 'Color', 'k', 'LineWidth', 0.8, 

'MaxHeadSize', 2000); axis tight;  

figure(300); hold on;  

h = surf(t, y, u1'); shading interp; contour3(t, y, u1', 20, 

'k', 'LineWidth', 1); view(3); 

xlabel('Time(s)'); ylabel('Height(m)'); 

zlabel('Velocity(m/s)'); colormap('winter'); 

 

 

%% Part 2 - Creating evolution of u at y=5m %% 

% clear; close all;  

% figure(101); clf; hold on;  

% for n=1:10 

%     k = [0, 2, 4, -2, -4, 0, 2, 4, -2, -4,];  

%     if n<6, load(sprintf('20_%i.mat', k(n))); else, 

load(sprintf('20_%i.mat', k(n))); end 

%     u2(:, 1) = u1(:, 501); t2(1,:) = t(1,:); 

%     gcf;  

%     plot(t2, u2) 

% end 

%  

% title('Variation of U (m/s) at Y=5m for Various a (1/s) 

Shear Values'); 

% legend('a=0', 'a=0.0002', 'a=0.0004', 'a=-0.0002', 'a=-

0.0004'); 

% xlabel('Time (s)'); 

% ylabel('Velocity (m/s)'); 

 

 

https://youtu.be/ORRy449c-EI

