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Abstract

Upwelling currents are steady wind-driven ocean currents
that occur near the coasts [1]. Their movement, although
slow, is vital to local ocean dynamics and circulation.
Here I use first principles to study the transient behavior
of a slow upwelling current under a no-slip, constant shear
configuration, representing the interaction of such a
current with the ocean floor and a strong pycnocline (a
thin, strongly stratified layer).

This paper shows that the vertical location of the
pycnocline is a dominant factor in the time-evolution of
upwelling currents and dictates the point at which the
boundary layer passes from a state independent of the
shear rate to one highly sensitive to it. In this second
regime, behavior is affected by the magnitude and
direction of the shear, and the form of its evolution, both
in shape and time, varies strongly.

Coastline

Figure 1: Wind-driven upwelling near the coast.[1]
Credit: NOAA
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Nomenclature

u;= Fluid Velocity (m/s)

7 = Shear (Pa)

4 = Dynamic Viscosity (Pa‘s)
v = Kinematic Viscosity (m/s)
p = Fluid Density (kg/m?)

Uy = Current Velocity (m/s)

h = Pycnocline Height (m)

t =Time (s)

a = Shear Rate 7/ u (s™)

Introduction

The coastal ocean is perhaps one of the most fascinating
and relevant topics in oceanography with relation to
human and marine life. Steady, dominant drivers of ocean
dynamics such as the tides, surface waves and inertial
forces can and often do give way to smaller, more space
and time-sensitive processes such as wind-driven
upwelling, internal tides or the presence of a pycnocline.
Although the effects produced by these processes are
often small, it is important to thoroughly understand them
as they can have disproportionate impacts on their
surroundings.

In this paper I investigate the time-dependance of a
horizontal upwelling current through a decoupling
strategy. Using the Navier-Stokes equations, I produce a
simple analytical model that can help generalize trends
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that occur during the dual-attenuation of a transient
upwelling current due to interaction with the ocean floor
and an upper pycnocline (Figure 2). I then use the model
to investigate how the velocities near the ocean floor vary
with shear and pycnocline elevation in time.

Methodology
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Figure 2: Setup and Coordinate System

A rectangular box of height / represents the area of study.
Initially, a current Up travels in the positive horizontal
direction and passes through the front of the box. It is
initially constant in y, and downstream effects are
considered negligible. In this case, 7 represents steady
forcing on the upper wall of the current Uy from the
bottom surface of the pycnocline. Physically, this could
be produced by upwelling currents above it travelling in
the opposite direction, or by other independent sources of
forcing.

For this study, I decouple the upwelling problem from
other processes and focus on u; at x=0, effectively making
it one-dimensional: ui=u. Then I assume typical Navier-
Stokes conditions and the following:

1) Infinite inx, z

2) Fully Developed Flow

3) No Applied Pressure Gradient

4) Neglecting Gravity

5) (From Continuity) dv/dy=0, v=0

6) Constant r During Timeframe

7) Viscous Diffusion has Minimal Effect on Flow

This reduces the Navier-Stokes equation in X to:

ou 0?

p(5) = u(a—;ﬁ (1)
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This can be split into steady-state and transient
components. I first solve the steady-state problem, using
the following boundary conditions (BC) for u(y, t),

0%u

where: 3 = 0
1) Initial Condition : u(y, 0) =0
2) Bottom BC (Dirichlet) : u(0, t)=0

. ou -
3) Top BC: 3y (ht)=a

Separating and integrating reduces the steady state
problem to:

uy) =ay = ug )
Where u; is the steady state component of velocity. To
solve the transient problem, I use separation of variables
and Dirichlet/Neumann conditions for /, which yields
the following:

T’_ Y”_ Az

T 'Y

Y'— 22Y =0 3)
T —v*T =0

The eigenfunctions Yn(y), Tn(t) and eigenvalues A can be
easily shown to be:

Y,(y) = sin ((n + %) %) for n=0,1,2...
T,(t) = e V4 forn=0,1,2...
W\«
1= (n 35
Combining the steady-state and transient solutions I find
the final solution u(y,t):

“4)

W\ry

u(y,t) = i B, sin ((n + %) 7T—;/)e_u<(n+§)%> t %)
n=0
Where:
h
B, = %L (Ugp — ug)sin ((n + %) ﬂ—hy)dy

Variable Determination

Values for the model are carefully chosen to enable a clear
picture of the area of interest.

Table 1: Values used in model

Variable | Value
h 15-20m
Uy 1 mm/s
v 0.01 m%/s
-4-104-4-10%s"!
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The height of an upwelling current varies based on
conditions and location. In this case, the range is kept
within the same order of magnitude as that found in
observational research [2]. Further consideration was
given to this range as being a common depth for coral
reefs and other structures vital to marine life.

The value for a was selected based on the magnitude of
Uy, with the upper-bound for upwelling velocities being
in the ~1 mm/s [3]. a is one order of magnitude smaller,
representing either relatively weak forcing or a large
pycnocline.

Finally, v was selected using the upper bound on
turbulent eddy diffusion. [4] In using this value it should
be acknowledged that actual timescales in the ocean
would differ widely. In this case, this assumption is
considered acceptable due to the focus on the decoupled
problem even if these processes do not function
independently.

Results

The model is first run with a=0 s!, h=20 m (Figure 3)
which yields a familiar profile across time and space.
This profile shows initial attenuation by the bottom
surface, but not by the top, as expected:

w s - 0 t=4000s

=
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u(mis) %10 u(mls) .10*

Figure 3: Evolution of boundary layer with zero top shear at
t=0 and t=4000s. The red line is the focus height y=5m.

I then move on to the case of positive 7 (Figure 4), which
represents a current flowing above the pycnocline in the
same direction as U.
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Figure 4: Boundary layer evolution for a=2-10" s! (left)
and a=4-10* s”! (right). Note the axis change on the right.
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In both cases the profiles appear similar in shape. Dual
attenuation occurs near the top and bottom surfaces,
simultaneously, with rapid deterioration near the bottom
surface, and a slower, logarithmic increase in velocity
near the top. Both processes are effectively independent.
While the bottom portion of the boundary layer can
quickly reach a linear state and constant slope, as defined
by the rate of diffusion, it is the slope of the shear that
dictates the overall time required to achieve linear
behavior. If there is mismatch in slope, the effects of the
shear must diffuse all the way to the bottom to achieve a
straight line, lengthening the process considerably (see
video).

Inow move to the case of negative shear (Figure 5), which
could represent a slower-moving current in the same
direction or upper upwelling currents moving in the
opposite direction. The profiles for both should look the
same.

Without pressure driven flow, the dominant upper current
must completely reverse Uy through forcing to achieve
equilibrium in u. While physical flows like this are likely
rare, it is still interesting to see that there are certain
regions in time that retain the bulk of the velocity, which
are noted on the graph. For ease of visualization, the
figures now show the top-down projection.
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Figure 5: Boundary layer evolution for a=-2-10 s”! (left)
and a=-4-10" s’ (right). The velocity axis applies to both.
Grey arrows show evolution of bulk velocity.
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height 20m for various shear rates a (1/s)
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While these results are interesting, they are not
particularly surprising. To get an idea of the trends in
velocity u across time near the bottom, I combine the
results and look specifically at the evolution at y=5Sm
(Figure 6).

Here it can be shown that u; remains unchanged until
about ~1600s, irrespective of shear rate, a trend which
remains consistent even at shear rates an order of
magnitude larger. In this case it is simply because shear
diffusion takes ~1600s to reach 5Sm at this height. Doing

the same at 15 m (Figure 7), one finds the following:
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Figure 7: Variation of u; (m/s) at y=5m with pycnocline
height 15m for various shear rates a (1/s)

In this case diffusion is significantly more rapid and so is
shear rate divergence.

Conclusions

This study has shown that a relatively strong upwelling
current Up bounded by the ocean floor and a pycnocline is
sensitive to both the location of the pycnocline and the
strength and direction of the upper shearing force. At
locations near the ocean floor, the evolution of Uy can be
split into two regimes, with the first being independent of
the shear rate a, and the second being highly sensitive to
it.

For pycnocline elevations far above the floor, under more
realistic conditions (slower Uy, less diffusion etc),
timescales for shear diffusion to the lower layer are likely
exceptional even under large shear rates. With such small
velocities it is unlikely that u(y,t) would remain free of
outside influences. Other processes such as tidal forces,
winds and currents would strongly affect upwelling far
before the influence of upper forcing would diffuse to that
point.

This also shows that currents below pycnoclines are
sensitive to the rate of shear. When the shear rate slope
and that of the bottom no-slip condition match, timescales
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are minimized and the system rapidly moves towards a
linear state. Mismatch in the slopes requires more time for
the growing profile to take a shape that resembles steady-
state behavior, and negative shear changes both the shape
of the profile and significantly increases the time for it to
appear linear.

Finally, due to the effects of diffusion, one can see that
profiles in negative shear have elevations that retain much
of the initial velocity for quite some time despite large
changes near the top and bottom.
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Appendix

This includes the code and links to videos of the evolution
of the boundary layer.

Video:

https://youtu.be/ORRy449c-EI

Code:

%% Part 1 - Calculating and Visualizing the Boundary
Layer Evolution %%

clear
clf

k = VideoWriter('Couette_TransientNegativeShear.mp4',
'MPEG-4"); % Video Setup and Title

k.FrameRate = 80;

open(k);

h=15; y=0:0.01:h; t=0:10:4000; % Variable definition
and setup

v=0.01; a=-0.0004; %-0.0002:0.0001:0.0002;
figure(1); clf; hold on;

h_plot = plot(0,0);

ul=zeros(length(t), length(y));

for i=1:length(t) % Calculates the boundary profile for
all t
r=0;
t1=t(i);
ul(i,’) = a.*y;
for n=0:100 % Calculates the boundary profile for a
given t with a large series
rl =-(2000 *a*h *sin((2 *pi *n+pi)/2)-2*
pi*n-pi)/ (250 * pi*2 * (2 * n+ 1)"2);
r2 = sin((n+1/2)*pi*y/h);
r3 = exp(-v¥((n+1/2)*pi/h)"2*t1);
r=r+rl.*r2.#r3;
end

ul(i,;) =ul(i,;:) +1;

xlabel(‘u (m/s)'); ylabel('y (m)"); ylim([0 h]);

xlim([-1.5E-3 1.5E-3]); % Manual Fix

grid on;

set(h_plot, 'XData', ul(i,:), 'YData', y);

drawnow;

title(sprintf('Transient Couette Flow, Negative Shear, t
=%.1fs', tl));
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frame=getframe(gcf); % Adds frame to video
writeVideo(k, frame);

end

close(k);

hold on; save('l5_t.mat', 'ul', 't"); % Saves dataset for
each iteration, title needs to be changed manually
figure(1); idx = 1:101:length(y);
quiver(zeros(size(y(idx)))', y(idx), ul(size(ul,1),idx),
zeros(size(y(idx))), 0, 'Color', 'k', 'LineWidth', 0.8,
'MaxHeadSize', 2000); axis tight;

figure(300); hold on;

h = surf(t, y, ul'); shading interp; contour3(t, y, ul', 20,
'k', 'LineWidth', 1); view(3);

xlabel('Time(s)"); ylabel('Height(m)');
zlabel("Velocity(m/s)'); colormap('winter");

%% Part 2 - Creating evolution of u at y=5m %%
% clear; close all;

% figure(101); clf; hold on;

% for n=1:10

% k=10,2,4,-2,-4,0,2,4,-2,-4,];

%  if n<6, load(sprintf("20_%i.mat', k(n))); else,
load(sprintf('20_%i.mat', k(n))); end

% u2(:, 1)=ul(; 501); 2(1,:) =t(1,);

% gcf;

% plot(t2, u2)
% end

%

% title('Variation of U (m/s) at Y=5m for Various a (1/s)
Shear Values');

% legend(‘a=0', 'a=0.0002', 'a=0.0004", 'a=-0.0002", 'a=-
0.0004");

% xlabel("Time (s)");

% ylabel("Velocity (m/s)");
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