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ABSTRACT

Noise cancellation is a commonly used technology that
cancels out incoming waves by producing their opposite. This
idea of cancelling out waves became an inspiration for our
problem. We solved the wave equation with a Dirichlet
boundary condition defined as a time-dependent
displacement. We then solved for this displacement so that
after time T, all waves on the membrane get cancelled, and we
are left with no motion. Studying the motion of the waves
before time T, we concluded that the boundary displacement
acts in an intuitive way to cancel out eigenmodes by
essentially adjusting to compensate for and then destroying
the incoming wave displacements over time. Possible further
work is also presented.

NOMENCLATURE

v = Wave speed

r = Radial coordinate measured from the membrane center

t = Time variable

r; =The radial position of the boundary

T = The time at which all waves should be canceled

u(r, t) = Transverse displacement at radius r and time t

g(t) = The boundary condition that is used to impose control
on the membrane

Jo = The zeroth-order Bessel function.

J1 = The first-order Bessel function

A, = The nth eigenvalue

u, = Hankel-transformed displacement corresponding to
eigenmode n.
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INTRODUCTION

Control theory provides an interesting foundation for
explaining physical phenomena, especially those defined by
differential equations. In this project, we studied a disk-like
membrane governed by the wave equation and explored how
to design a boundary condition function that drives the
boundary displacement and velocity to zero at a selected final
time. This problem is very interesting on account of its inverse
dichotomy; instead of fixing the boundary conditions and
observing the resulting waves, we instead determine the
boundary displacement that is required to cancel them.

The inspiration for this project stems from the concept of
noise cancellation. Modern noise cancellation technology
makes use of destructive interference: the device generates the
opposite amplitude of the unwanted signal and sends it to the
receiving end to cancel waves out. In practice, this requires
sensing the incoming waves, discretizing them into
manageable pieces, and then producing an output that sums to
a zero value at the receiving end or boundary.

Our project essentially emulates this idea and applies it in a 3-
dimensional cylindrical context. We establish a circular
membrane, apply the radial wave equation, organize initial
conditions, and then derive the necessary boundary
displacements to drive the signal to zero at a desired final time.
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PROBLEM DEFINITION
The wave equation is defined as:

16( 6u)_ 1 0%u
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‘With initial conditions defined as:
u(r,0) = uy(r)

6 —
au(r, 0) =u,(r)

And a Dirichlet boundary condition defined as:
u(r,t) = g(t)

The objective: solve g(t) such that at time T: u(r,T) = 0 and
u'(r, T)=0vre[0,r,)

METHODOLOGY

We started by establishing the wave equation and its initial
conditions. Then we applied the finite Hankel transform and
deduced the Eigenvalues via the Sturm-Liouville problem
setup. This resulted in a non-homogeneous ODE in modal
space. Solving this ODE vyielded the solution of the
transformed equation. After solving for the transformed
equation and performing the inverse Hankel transform, we
solved for the boundary displacement such that our solution
would vanish. To do that, we used a finite piecewise constant
ansatz to approximate g(t). Substituting this form into the
equations produced by the Hankel transformation left us with
a linear system, which we solved to find control coefficients
that were used to define boundary motion. It is helpful to note
that the derivation for the Hankel Transform and other
related equations will not be shown; for more information on
these topics, refer to Integrated Math For Engineers [1].

HANKEL TRANSFORM
The Finite Hankel Transform is defined as [1]:

5, = f " Vo G
0

Where A, are the eigenvalues defined by the Sturm-Liouville
problem Because the boundary condition is of the Dirichlet
type, the eigenvalues are defined as the roots of the following
equation as can be found in Integrated Engineering
Mathematics [1].

] 0 (Anrl) =0
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The operational property of the Discrete Hankel Transform is
defined as:

10/ ou ”
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Using the operational property found in Integrated
Engineering Mathematics [1], the equation is transformed to:
0*u

szt Vi Uy = V21 A (Amy) g (t)

With transformed initial conditions: %, and i,
SOLVING LINEAR ODE

a is defined as:
a = V2/1n7‘1]1 (/1,17"1)

The transformed equation can be written as:
cu
Fre +veA,u, = ag(t)

w,, is defined as:

W, =+/V*A,
The solution to the homogeneous transformed ODE is:
Uy, = clcos( vz/lnt) + czsin( vz/lnt)
By Green’s theorem for linear wave operators, the solution can
be written as a convolution of the Green kernel with the
forcing term[2].

Upy = minfotsin (wn(t - ‘r))g(‘[)dr

The solution is then defined as the superposition of the
homogeneous solution and the particular solution:

Uy = Upp + Upy

Using the inverse Hankel transform [1], the solution to the
wave equation is:

IMPLEMENTING CONSTRAINTS

Plugging in T for t into the solution to the transformed
ordinary differential equation and solving for the convolution
integral yields:

f sin (wn(t - r))g(r)dr =5,

0
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Solving for the convolution integral for the time derivative of

the same function results in:
T

f cos (a)n(t — ‘L'))g(‘r)d‘[ =C,

0
Where S, and C,, are defined as:

-
Sp = Tn (@pcos(w,T) + ysin(w,T))

1
C, = o (wn iy cos(w,T) — w,ilpsin(w,T))

A piecewise constant ansatz can be used to approximate g (t)
because it maps linearly onto the governing equations:

M
gt ~ Z Yie Pic(£)
k=1
The integrals can be quantized into the same bins as g(t):
tkt1
I.(nk):= f sin (a)n(t — ‘[))d‘[
tk
tk+1
I.(nk):= f cos ((un(t - r))dr
tk

Substituting this into the equations:

M
S0 % D Vil (0 k)
k=1

M
Co = D Vi ule(n k)

k=1
To solve for the coefficients of the piecewise constant ansatz,
a linear equation is defined:

g=A"1b
Where § are the coefficients of the piecewise constant ansatz
and A is defined as:

I(1,1) I4(1,2) I(1, M)
I.(1,1) I.(1,2) :
A: . . . .
Ii(n,1) I;(n,2) ... Ii(n,M)
I.(n,1) I.(n,2) ... I.(n,M)
And b is defined as:
R
C:
b= :
Sn
[Cr

Journal of Applied Engineering Mathematics December 2025, Vol. 12

Solving this problem yields the solution for g such that the
displacement and velocity of the membrane will go to zero at
time T.

RESULTS AND DISCUSSION

The boundary controlling function, g(t), consistently succeeds
in cancelling the membrane motion at the final time, T,
driving both displacement and velocity to zero. This holds to
be true for a variety of initial conditions and confirms that the
transform-based approach of solving this problem correctly
captures the governing physical dynamics.

We find that the problem was formulated in a way that makes
it hard to connect to a real-world scenario. The boundary does
not act by gradually suppressing the wave amplitude by
matching the displacement in a direct or intuitive way.
Instead, the boundary acts as what we call “the mode hunter”,
entering the system and moving in a way that isolates and
destroys the eigenmodes one by one. This of course leads to
the vanishing of the overall wave field at the prescribed time,
even though the interior membrane motion may not decrease
over time. The boundary is not simply reducing the amplitude
of the wave everywhere at once but rather responding
dynamically to the structure of the solution. By following the
membrane motion as it reaches the boundary and injecting
the proper boundary displacement, the control function
eliminates the contribution of each eigenmode as it arrives.
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Figure 1: Boundary control of the wave equation with an Iinitial
Gaussian pulse.
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Figure 2: Membrane cross-section at various time Steps

Figures 1 and 2 illustrate this behavior clearly. The boundary
control function, g(t), evolves periodically, closely following
the membrane motion at the boundary rather than enforcing
a measured and out-of-phase destructive wave. At the same
time, boundary-generated waves propagate inward and
interact with the initial disturbance, gradually reshaping the
membrane response. Despite all the dynamic motion of the
membrane, the net effect is the steady removal of wave
motion, and at the final time T, both the displacement and
velocity of the membrane vanish throughout the domain,
confirming that the boundary-driven control successfully
achieves wave cancellation.

Initial conditions change the subsequent propagation of
waves, which means that the initial conditions also change the
control input required to destroy waves. This can be seen in
figures 3 and 4, where the same Gaussian pulse as figures 1 and
2 was applied, except on the initial velocity rather than the
initial displacement. As can be seen, this change led to drastic
differences in the boundary control and waves that
propagated. Each of the wave parameters seems to change the
boundary control, leading to what seems to be a unique
boundary control per set of parameters and initial conditions.

Together, these results show that successful wave cancellation
in this system is achieved through proper timing and
coordination at the boundary rather than through continuous
suppression of the wave signal field. The boundary
displacement adapts to the incoming motion and responds in
such a way that it removes the wave’s eigenmodes one by one.
Although the way the membrane evolves appears to be
complex before the final time, the outcome is consistent and
repeatable: the boundary control drives the system to rest.
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Boundary control g(t)
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Figure 3: Boundary Control for a Gaussian Pulse of the Initial
Velocity

Snapshots of membrane profile
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Figure 4: Membrane cross-section of a Gaussian pulse of the initial
velocity.

CONCLUSIONS

Our project was an attempt at applying active noise
cancellation through boundary control to a radially
propagating wave on a circular membrane. After establishing
the wave equation and its initial conditions, we applied the
Hankel transform and the appropriate Sturm-Liouville
eigenfunction problem in order to express our solution in
terms of the Bessel equation, noting its eigenmodes. We then
applied the inverse transform, which led us to utilize a
piecewise-constant function for the boundary control, g(t).
This led to the production of a linear system whose solutions
cancel the outgoing waves. This approach shows how integral
transform methods and constraint-based control techniques
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can provide an effective solution for boundary control of
radial wave propagation.

Future work could include solving for a forcing term to
achieve similar results. In practice, similar boundary-driven
control strategies could be implemented using active
boundaries, such as distributed actuators or speaker arrays, to
cancel vibrations or acoustic waves in membranes or thin
structures. This could result in better noise cancellation in
enclosed spaces or better fatigue reduction in components
subject to amplifying vibration modes. Similarly, using a more
physically realistic boundary condition, such as the Robin
conditions, would lead to more physically representative
results.
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