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ABSTRACT 
 
Noise cancellation is a commonly used technology that 
cancels out incoming waves by producing their opposite. This 
idea of cancelling out waves became an inspiration for our 
problem. We solved the wave equation with a Dirichlet 
boundary condition defined as a time-dependent 
displacement. We then solved for this displacement so that 
after time T, all waves on the membrane get cancelled, and we 
are left with no motion. Studying the motion of the waves 
before time T, we concluded that the boundary displacement 
acts in an intuitive way to cancel out eigenmodes by 
essentially adjusting to compensate for and then destroying 
the incoming wave displacements over time. Possible further 
work is also presented. 

 

NOMENCLATURE 
 
𝜈  = Wave speed  
𝑟 = Radial coordinate measured from the membrane center 
𝑡 =	 Time variable  
𝑟! =The radial position of the boundary 
𝑇 = The time at which all waves should be canceled    
𝑢(𝑟, 𝑡) = Transverse displacement at radius r and time t 
𝑔(𝑡) = The boundary condition that is used to impose control 
on the membrane 
𝐽" =   The zeroth-order Bessel function. 
𝐽! = The first-order Bessel function 
λ# = The nth eigenvalue  
𝑢.# =  Hankel-transformed displacement corresponding to 
eigenmode n. 

 
INTRODUCTION 

 
Control theory provides an interesting foundation for 
explaining physical phenomena, especially those defined by 
differential equations. In this project, we studied a disk-like 
membrane governed by the wave equation and explored how 
to design a boundary condition function that drives the 
boundary displacement and velocity to zero at a selected final 
time. This problem is very interesting on account of its inverse 
dichotomy; instead of fixing the boundary conditions and 
observing the resulting waves, we instead determine the 
boundary displacement that is required to cancel them.  

The inspiration for this project stems from the concept of 
noise cancellation. Modern noise cancellation technology 
makes use of destructive interference: the device generates the 
opposite amplitude of the unwanted signal and sends it to the 
receiving end to cancel waves out. In practice, this requires 
sensing the incoming waves, discretizing them into 
manageable pieces, and then producing an output that sums to 
a zero value at the receiving end or boundary.   

Our project essentially emulates this idea and applies it in a 3-
dimensional cylindrical context. We establish a circular 
membrane, apply the radial wave equation, organize initial 
conditions, and then derive the necessary boundary 
displacements to drive the signal to zero at a desired final time.   
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PROBLEM DEFINITION  
The wave equation is defined as: 

 	
1
𝑟
∂
∂𝑟 1𝑟

∂𝑢
∂𝑟2 =

1
ν$
∂$𝑢
∂𝑡$  

 
With initial conditions defined as: 

𝑢(𝑟, 0) = 𝑢"(𝑟) 
∂
∂𝑡 𝑢

(𝑟, 0) = 𝑢!(𝑟) 

 
And a Dirichlet boundary condition defined as:  

𝑢(𝑟!, 𝑡) = 𝑔(𝑡) 

 
The objective: solve 𝑔(𝑡) such that at time T: 𝑢(𝑟, 𝑇) = 0 and 
𝑢%(𝑟, 𝑇) = 0 ∀𝑟 ∈ [0, r!) 
 
METHODOLOGY 
We started by establishing the wave equation and its initial 
conditions. Then we applied the finite Hankel transform and 
deduced the Eigenvalues via the Sturm-Liouville problem 
setup. This resulted in a non-homogeneous ODE in modal 
space. Solving this ODE yielded the solution of the 
transformed equation. After solving for the transformed 
equation and performing the inverse Hankel transform, we 
solved for the boundary displacement such that our solution 
would vanish. To do that, we used a finite piecewise constant 
ansatz to approximate 𝑔(𝑡). Substituting this form into the 
equations produced by the Hankel transformation left us with 
a linear system, which we solved to find control coefficients 
that were used to define boundary motion. It is helpful to note 
that the derivation for the Hankel Transform and other 
related equations will not be shown; for more information on 
these topics, refer to Integrated Math For Engineers [1]. 

 
HANKEL TRANSFORM 
The Finite Hankel Transform is defined as [1]: 

𝑢#‾ = : 𝑢
&!

"
(𝑟)𝐽"(𝜆#𝑟)𝑟𝑑𝑟 

Where λ' are the eigenvalues defined by the Sturm-Liouville 
problem Because the boundary condition is of the Dirichlet 
type, the eigenvalues are defined as the roots of the following 
equation as can be found in Integrated Engineering 
Mathematics [1]. 

𝐽"(𝜆'r!) = 0 
 
 

The operational property of the Discrete Hankel Transform is 
defined as: 

𝐻 >
1
𝑟
∂
∂𝑡 1𝑟

∂𝑢
∂𝑡2? = 𝑟!λ'𝐽!(λ'𝑟!)𝑔(𝑡) − λ#$𝑢.# 

Using the operational property found in Integrated 
Engineering Mathematics [1], the equation is transformed to: 

∂$𝑢
∂𝑡$ + 𝜈

$𝜆#𝑢‾# = 𝜈$𝑟!𝜆#𝐽!(𝜆#𝑟!)𝑔(𝑡) 

With transformed initial conditions: 𝑢." and 𝑢.! 
 
SOLVING LINEAR ODE 
 
𝛼 is defined as: 

𝛼 = 𝜈$𝜆#𝑟!𝐽!(𝜆#𝑟!) 

 
The transformed equation can be written as: 

∂$𝑢
∂𝑡$ + 𝜈

$𝜆#𝑢‾# = 𝛼𝑔(𝑡) 

ω# is defined as: 
 

ω# = Dν$λ# 
The solution to the homogeneous transformed ODE is: 

u.(' = 𝑐!𝑐𝑜𝑠 ID𝜈$𝜆#𝑡J + 𝑐$𝑠𝑖𝑛 ID𝜈$𝜆#𝑡J 
By Green’s theorem for linear wave operators, the solution can 
be written as a convolution of the Green kernel with the 
forcing term[2]. 
 

𝑢‾)# =
α
ω'

: sin
*

"
Q𝜔#(𝑡 − 𝜏)T𝑔(𝜏)𝑑𝜏 

The solution is then defined as the superposition of the 
homogeneous solution and the particular solution: 

𝑢.# = 𝑢.+# + 𝑢.)# 
Using the inverse Hankel transform [1], the solution to the 
wave equation is: 

U𝑢‾#

,

#-!

𝐽"(𝜆#𝑟)
𝑟!$
2 𝐽!(𝜆#𝑟!)

 

 
IMPLEMENTING CONSTRAINTS 
Plugging in T for t into the solution to the transformed 
ordinary differential equation and solving for the convolution 
integral yields: 

:sin
.

"

Q𝜔#(𝑡 − 𝜏)T𝑔(𝜏)𝑑𝜏 = 𝑆# 
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Solving for the convolution integral for the time derivative of 
the same function results in: 

:cos
.

"

Q𝜔#(𝑡 − 𝜏)T𝑔(𝜏)𝑑𝜏 = 𝐶# 

Where 𝑆# and 𝐶# are defined as: 
 

𝑆# =
−𝜔#
𝛼 Q𝑢‾"cos(𝜔#𝑇) + 𝑢‾!sin(𝜔#𝑇)T 

𝐶# =
1
𝛼 Q𝜔#𝑢‾!cos

(𝜔#𝑇) − 𝜔#𝑢‾"sin(𝜔#𝑇)T 

A piecewise constant ansatz can be used to approximate 𝑔(𝑡) 
because it maps linearly onto the governing equations: 
 

𝑔(𝑡) ≈U𝛾/

0

/-!

𝜙/(𝑡) 

The integrals can be quantized into the same bins as 𝑔(𝑡): 

𝐼1(𝑛, 𝑘) := : sin
*"#!

*"
Q𝜔#(𝑡 − 𝜏)T𝑑𝜏 

𝐼2(𝑛, 𝑘) := : cos
*"#!

*"
Q𝜔#(𝑡 − 𝜏)T𝑑𝜏 

Substituting this into the equations: 

𝑆# ≈U𝛾/

0

/-!

𝜙/𝐼1(𝑛, 𝑘) 

𝐶# ≈U𝛾/

0

/-!

𝜙/𝐼2(𝑛, 𝑘) 

To solve for the coefficients of the piecewise constant ansatz, 
a linear equation is defined: 

𝑔⃗ = 𝐴3!𝑏d⃗  
Where 𝑔⃗ are the coefficients of the piecewise constant ansatz 
and A is defined as: 
 
 
 
 
 
 
 
And 𝑏d⃗  is defined as: 

 
Solving this problem yields the solution for g such that the 
displacement and velocity of the membrane will go to zero at 
time T. 
 
RESULTS AND DISCUSSION 
 
The boundary controlling function, g(t), consistently succeeds 
in cancelling the membrane motion at the final time, T, 
driving both displacement and velocity to zero. This holds to 
be true for a variety of initial conditions and confirms that the 
transform-based approach of solving this problem correctly 
captures the governing physical dynamics.  
 
We find that the problem was formulated in a way that makes 
it hard to connect to a real-world scenario. The boundary does 
not act by gradually suppressing the wave amplitude by 
matching the displacement in a direct or intuitive way. 
Instead, the boundary acts as what we call “the mode hunter”, 
entering the system and moving in a way that isolates and 
destroys the eigenmodes one by one. This of course leads to 
the vanishing of the overall wave field at the prescribed time, 
even though the interior membrane motion may not decrease 
over time. The boundary is not simply reducing the amplitude 
of the wave everywhere at once but rather responding 
dynamically to the structure of the solution. By following the 
membrane motion as it reaches the boundary and injecting 
the proper boundary displacement, the control function 
eliminates the contribution of each eigenmode as it arrives.  
 
 

 
Figure 1: Boundary control of the wave equation with an initial 
Gaussian pulse. 
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Figure 2: Membrane cross-section at various time steps 

Figures 1 and 2 illustrate this behavior clearly. The boundary 
control function, g(t), evolves periodically, closely following 
the membrane motion at the boundary rather than enforcing 
a measured and out-of-phase destructive wave. At the same 
time, boundary-generated waves propagate inward and 
interact with the initial disturbance, gradually reshaping the 
membrane response. Despite all the dynamic motion of the 
membrane, the net effect is the steady removal of wave 
motion, and at the final time T, both the displacement and 
velocity of the membrane vanish throughout the domain, 
confirming that the boundary-driven control successfully 
achieves wave cancellation.  
 
Initial conditions change the subsequent propagation of 
waves, which means that the initial conditions also change the 
control input required to destroy waves. This can be seen in 
figures 3 and 4, where the same Gaussian pulse as figures 1 and 
2 was applied, except on the initial velocity rather than the 
initial displacement. As can be seen, this change led to drastic 
differences in the boundary control and waves that 
propagated. Each of the wave parameters seems to change the 
boundary control, leading to what seems to be a unique 
boundary control per set of parameters and initial conditions.   
 
Together, these results show that successful wave cancellation 
in this system is achieved through proper timing and 
coordination at the boundary rather than through continuous 
suppression of the wave signal field. The boundary 
displacement adapts to the incoming motion and responds in 
such a way that it removes the wave’s eigenmodes one by one. 
Although the way the membrane evolves appears to be 
complex before the final time, the outcome is consistent and 
repeatable: the boundary control drives the system to rest. 

 
 
Figure 3: Boundary Control for a Gaussian Pulse of the Initial 
Velocity 

 

 
Figure 4: Membrane cross-section of a Gaussian pulse of the initial 
velocity. 

 
CONCLUSIONS 
 
Our project was an attempt at applying active noise 
cancellation through boundary control to a radially 
propagating wave on a circular membrane. After establishing 
the wave equation and its initial conditions, we applied the 
Hankel transform and the appropriate Sturm-Liouville 
eigenfunction problem in order to express our solution in 
terms of the Bessel equation, noting its eigenmodes. We then 
applied the inverse transform, which led us to utilize a 
piecewise-constant function for the boundary control, g(t). 
This led to the production of a linear system whose solutions 
cancel the outgoing waves. This approach shows how integral 
transform methods and constraint-based control techniques 
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can provide an effective solution for boundary control of 
radial wave propagation. 
 
Future work could include solving for a forcing term to 
achieve similar results. In practice, similar boundary-driven 
control strategies could be implemented using active 
boundaries, such as distributed actuators or speaker arrays, to 
cancel vibrations or acoustic waves in membranes or thin 
structures. This could result in better noise cancellation in 
enclosed spaces or better fatigue reduction in components 
subject to amplifying vibration modes. Similarly, using a more 
physically realistic boundary condition, such as the Robin 
conditions, would lead to more physically representative 
results. 
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