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ABSTRACT 

 
Design of axial flow turbomachinery is a critical step in the 
iterative process of gas turbine development.  Existing designs 
for the aerodynamic blade profiles are not flexible enough to 
use with advanced design analysis and automation tools.  A 
Bézier curve fitting approach is proposed as a tool to improving 
the existing design for future use and development.  An 
optimization technique is used to determine the control points 
for the approximated curves while maintaining tangency and 
curvature at the connections.  Results are provided and the 
drawbacks to the curve fitting and optimization approach are 
discussed. 
 

NOMENCLATURE 
 
  P(t) – Bézier curve of order n 
            
            – ith Bernstein basis polynomial of degree n 

 
 

INTRODUCTION 
 

Geometric design of axial flow turbomachinery is critical to the 
development of a gas turbine engine.  Often the aerodynamic 
blade design is the inner loop of the overall iterative engine 
design process.  As a result, methods for creating blade profiles 
must be robust and flexible in order to efficiently provide many 
different configurations during the design cycle.  Past methods 
for developing blade profiles often involve complex 
parameterization schemes which use arcs, circles, and 
polynomials for geometry creation.  Many of these methods 
require large data sets to describe the profile.  In addition, they 
do not provide simple, intuitive parameters for the designer to 
control and frequently result in additional smoothing and 
geometric changes during the final stages of design.  This paper 
proposes a method for creating an improved blade definition 
from existing legacy blade designs.  Bézier curves are used to 
fit an existing data set while maintaining tangency and 
curvature between the curve connections. 

 
 

BACKGROUND 
 
Bézier curves were developed in the 1960’s by Pierre Bézier 
while working as an engineer for the Renault automobile 
company.  Bézier curves have since become a popular method 
for creating parametric curves.  Bézier curves have wide 
application including PostScript font definition.  However, 
since Bézier’s initial development of these simple parametric 
curves, additional refinements to the have been made in the 
definition of B-splines and NURBS.  These curves are both 
generalizations of the basic Bézier curve and have specific 
application in advanced computer aided design, analysis, and 
manufacturing. 
 

 
BÉZIER CURVE DEFINITION 
 
A Bézier curve of n order is defined by the following equation: 
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where Pi represents the set of n + 1 control points, t is a single-
valued parameter which varies from 0 to 1, and ( )tB n
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referred to as the ith Bernstein basis polynomial of degree n.     
Figure 1 shows four different examples of Bézier curves of 
degree one through four. 
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Figure 1.  Examples of Bézier curves of different degree 

 
From the above equations and figure it can be seen that the 
blending functions act as the link between the control points 
and the points on the Bézier curve.  In each case the first and 
last control points lie on the actual curve while the other control 
points form a control envelope for the curve.  
 
Often a single Bézier curve is insufficient for describing a 
complex profile.  In this case it is common to use several Bézier 
curve segments joined together.  Different parametric 
continuity conditions exist for joining multiple Bézier curves.  
In order for two curves to actually join they must meet at a 
junction point.  This is termed as order zero continuity.  For the 
Bézier curve definition the last control point of the first curve 
and the first control point of the second curve must be equal.  A 
second type of continuity is tangency or continuity of slope.  
This first order continuity is imposed by setting the last two 
control points of the first curve and the first two control points 
of the second curve in a straight line and the length of the two 
line segments equal to each other.  Second order continuity, or 
curvature continuity, further restricts freedom of the control 
points.  In this case continuity is guaranteed by equating the 

ratio 
2a

h for each curve where h is the perpendicular distance 

from the third control point and the first leg (the line segment 
between the first and second control points) of the control 
polygon and a is the length of the first leg of the control 
polygon.   
 
Bézier curve continuity can also be of the geometric type.  
Geometric continuity is less restrictive and allows for increase 
flexibility in the variation of the magnitude of the length of the 
control polygon legs.  While curves meeting the parametric 
continuity conditions may also be said to be geometricly 
continuous, the reverse is not true. 
 
 
BÉZIER CURVE FITTING METHOD 
 
The Bézier curve approach was used to fit second order 
continuous curves to existing turbine blade design data.  The 
existing design provided a data set of points for each of the four 
curve segments shown in Figure 2. 
 

 
Figure 2.  Turbine blade curve segment locations 

 
Each curve segment was defined by an arbitrary number of data 
points.  The break points for each curve were determined by the 
spacing of the data points.  Both the leading edge and trailing 
edge were constructed tightly spaced points that created a clear 
division between the curve segments. 
 
In order to fit the Bézier curves to the existing data an 
optimization based model was constructed.  The t-values for the 
blending functions were determined by calculating the distance 
between the data points and setting the t-values to approximate 
the same intervals.  For the optimization routine the control 
points were selected as the design variables.  Constraints were 
set to control the continuity at the connections.  The first and 
second order continuity was controlled using the following 
differential equations: 
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where y1 and y2 are the Bézier curve function evaluated at some 
t-value and C1 and C2 are two constants used as design 
variables in the optimization.  By setting these functions as 
constraints the tangency and curvature at the junctions was 
fixed.  The optimization routine was then used to minimize the 
error between the existing data set and the best fit Bézier curve. 
 
 
RESULTS 
 
The optimization technique provided accurate curve fitting for 
the pressure and suction side curves.  The resulting Bézier 
curves and the existing data set are shown in figures 3 and 4 for 
the pressure and suction sides respectively. 
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Figure 3.  Pressure side curve with Bézier curve approximation 
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Figure 4.  Suction side curve with Bézier curve approximation 

 
 

From the above charts it can be seen that the Bézier curve 
approximation closely matches the existing data set while still 
maintaining tangency and curvature at the connection points. 
 
Although the Bézier curve fitting strategy worked well for the 
larger pressure and suction side curves, the leading and trailing 
edge segments were not able to fit the data as closely without 
violating the continuity constraints.  Figures 5 and 6 show the 
optimized Bézier curves as well as the legacy blade data.  For 
both curves the continuity constraints forced the Bézier 
approximation away from the data set in order to provide a 
feasible solution.   This was the result of a large change in 
curvature between the relatively flat and pressure and suction 
side curves and the tightly curved leading and trailing edges.  
Therefore, the optimization routine created noticeable error in 
order to satisfy continuity.  Although the error in fitting these 
segments provided visibly different curves, the new parametric 
Bézier definition can be manipulated to provide a slightly 
modified geometry that would still function in future turbine 
blade design. 
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Figure 5.  Leading edge curve with Bézier curve approximation 
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Figure 6.  Trailing edge curve with Bézier curve approximation 
 

 
CONCLUSIONS & RECOMMENDATIONS 

A Bézier curve approximation for fitting existing turbine blade 
design data is a useful method for creating a robust, parametric 
geometry definition.  This approach provided a simple method 
for optimizing the curve fit based on the continuity at the 
junctions. 
 
Although the optimization technique was able to provide 
accurate results for the curve fit, it did require the designer to 
frequently manipulate the optimization parameters and run 
multiple routines.  Slight changes in the location of the control 
points would drive the optimization to undesirable local 
optimums.   
 
Additional methods for determining the control points should 
be considered.  A least squares fit would provide a closed form 
solution for calculating the control points at a give set of t-
values.  The error could then be refined using a simple Newton-
Rhapson algorithm.  In addition, the legacy data used for the 
curve fitting was not guaranteed to maintain tangency and 
curvature at all locations.  Therefore, resulting solutions should 
not be ranked on the error alone. 
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APPENDIX 
 

Excel curve fitting tool available upon request.�
 


