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ABSTRACT 

  
This paper deals with fairly simple, cylindrical coordinate fluid 
flow. It is the analysis of two different fluids undergoing 
cylindrical Couette flow. The method used was taking the full 
Navier-Stokes equations and deriving the ODE for the 
simplified case. The paper shows how ice-cream churning can 
linearly increase in difficulty as the cream solidifies. 

 

NOMENCLATURE 
 
Put nomenclature here. 

 
 

INTRODUCTION 
 

In my robotics class my teammate and I set out to churn ice-
cream with a robot arm. The robot we used was fairly weak 
despite its size. We wanted to better understand the torque 
required to crank the ice-cream so we could ensure feasibility. 
This is our simplified problem statement: 
 
How much torque is required to spin an ice-cream bucket and 
churn the interior ice-cream. The equivalent diameter of the 
water bucket, ice-cream bucket, and center shaft are 
respectively, .381m, .2286m, and .0254m. Assume infinite in Z 
and ignore end effects. There is water between the water bucket 
and the ice-cream bucket with a viscosity of 1750 * 1^-6 
N*s/m^2. The ice-cream between the ice-cream bucket and the 
center shaft is .1 N*s/m^2. Assume laminar flow for both 
fluids. 
 

 
 

Put body of the paper here: 
 
The aim of this paper is to determine the way fluids act when 
they are being spun in opposite directions inside an ice-cream 
bucket. The boundary conditions are fairly simple as they are 

no slip wherever the ice-cream is in contact with the solid 
surfaces. The difficult part was found in the geometry itself was 
the difficult part. The interior is made up of paddles intended to 
create large amounts of mixing. This means that you have r, ϕ, 
and z momentum. You also have significant derivative of all 
the velocities in all the directions. Therefore I would have to 
solve the full Navier-Stokes equations. This is something only 
solvable by computer software. I altered the geometry for my 
problem and simplified it to have only a cylinder in the center 
instead of all the paddles. I made the cylinder larger so that it 
would hopefully accommodate the change in geometry for my 
analysis to be semi-accurate for finding the torque required to 
crank. 
 
Assumptions that I made were that gravity was not in the θ 
direction, it was steady state flow, it isn’t pressure driven flow, 
it is axisymmetric, and fully developed. With these equations 
the problem reduced to a second order, linear, second order 
differential equation. 
 

 
 
The analytical solutions was found through the method of 
separation of variables. 
 

 
 
At this point it remains to find the coeficients C1 and C2. For 
my case I have a cylinder within a cylinder withing a cylinder. I 
also have two different fluids, ice-cream and ice water. I had to 
apply the three boundary conditions of no slip or uϕ = ωr at all 
boundaries. Applying these Dirichlet conditions everywhere for 
the two fluids yielded the two equations for the different fluids. 
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These velocity profiles can be seen attached as Figure 1. As 
can be seen here the viscosity of the two fuids doesn’t play a 
role in their velocities or velocity profiles because this is 
essentially Couette flow. The shear however does rely on 
viscosity of the fluid. 
 

 
 
Applying the two different viscosities I obtained the graph 
shown in Figure 2 
 

 
 
I then multiplied the shears on all the surfaces to obtain a 
torque required to crank the ice-cream. As you crank ice-cream 
it crystalizes and solidifies and the fluid properties change. To 
accommodate for this I used a span of 0.1 to 1.0 Pa*s for the 
viscosity to model the change. The viscosity of the ice-cream is 
much more than that of ice water and therefore very quickly it 
makes much more difference to the torque required than the 
water. 

 
CONCLUSIONS 
 
It was determined from the calculations that when you are first 
starting to crank the ice-cream and is still basically cream, the 
torque required is 0.6099 N*m. By the time the viscosity has 
increased by 1 order of magnitude, the torque required is up to 
6.2504 N*m. That is equivalent to 57 lb*in. The crank of the 
ice-cream bucket has a 7 in radius and therefore the force 
required to crank it is a little over 8 lbs. 
 
For the robot that we used, this final torque is probably too high 
as it can only put out about 2 lb of force and the 8 lb isn’t even 
the torque needed from the greatest viscosity of the ice-cream. 
The result is that while it is fun to churn a brobot into a probot 
and to crank ice-cream, it is probably too hard for the robot we 
used. My model needs further validation in comparison with 
other ice-cream cranking models but it seams fairly reasonable 
as I have often cranked ice-cream and the torque required 
changed drastically as can be seen here. 
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APPENDIX 
 
Matlab Code for computing C1, C1, C3, C4 and plotting 

the graphs. 
 

clear 
close all 
clc 
  
% Subscripts cs, ic, wb reference center 
shaft, ice-cream bucket, and water 
% bucket respectivelyc 
mu_icecream = [.1:.1:1]; % N*s/m^2 
mu_water = 1750e-6; % N*s/m^2 
h = .5; % height of icecream bucket 
Dcs = .0254; % meters 
Dic = .2286; % meters 
Dwb = .381; % meters 
r = [Dcs Dic Dwb]/2; 
wcs = 2*pi; % m/s 
wic = -2*pi; % m/s 
wwb = 0; % m/s 
w = [wcs wic wwb]; 
  
system_1 = [r(1) 1/r(1) w(1)*r(1); 
            r(2) 1/r(2) w(2)*r(2)]; 
system_2 = [r(2) 1/r(2) w(2)*r(2); 
            r(3) 1/r(3) w(3)*r(3)]; 
c1_c2 = rref(system_1); 
c1 = c1_c2(1,3); 
c2 = c1_c2(2,3); 
c3_c4 = rref(system_2); 
c3 = c3_c4(1,3); 
c4 = c3_c4(2,3); 
  
r1 = [r(1):.0001:r(2)]; 
r2 = [r(2):.0001:r(3)]; 
v_icecream = c1.*r1+c2./r1; 
v_icewater = c3.*r2+c4./r2; 
d_dr_icecream = c1-c2./r1.^2; 
d_dr_icewater = c3-c4./r2.^2; 
  
figure() 
plot(r1,v_icecream,'--',r2,v_icewater) 
title('Velocity profile inside and outside 
ice-cream bucket') 
legend('Ice-cream', 'Ice Water') 
ylabel('v_{\theta} (m/s)') 
xlabel('r (m)') 
Tau_icecream = 
zeros(length(d_dr_icecream),length(mu_icec
ream)); 
for i = 1:length(mu_icecream) 
    Tau_icecream(:,i) = -
mu_icecream(i).*d_dr_icecream; 
end 
 

http://www.homepages.ed.ac.uk/shs/Climatechange/Flettner%20ship/Childs%20Annuli.pdf
http://www.homepages.ed.ac.uk/shs/Climatechange/Flettner%20ship/Childs%20Annuli.pdf
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Tau_water = -mu_water*d_dr_icewater; 
figure() 
hold on 
for i = 1:length(mu_icecream) 
    plot(r1,Tau_icecream(:,i),'--') 
end 
plot(r2,Tau_water) 
title('Shear of both fluids with 
increasing \mu_{ice-cream} as a function 
of r') 
legend('.1', '.2', '.3', '.4', '.5', '.6', 
'.7', '.8', '.9', '1.0', 'Ice Water') 
ylabel('\tau (Pa)') 
xlabel('r (m)') 
Tau_total = 
Tau_icecream(1)+Tau_icecream(end)+Tau_wate
r(1) 
Torque_to_crank = 
pi*(Tau_icecream(1,:).*Dcs+Tau_icecream(en
d,:).*Dic+Tau_water(1)*Dic) 
figure() 
plot(mu_icecream,Torque_to_crank) 
title('required torque with increasing 
\mu_{ice-cream}') 
ylabel('Torque (N*m)') 
xlabel('\mu_{ice-cream} (Pa*s)') 

 
 
 
 

 
 
 
 

 
 

 

Figure 2. Shear profiles for the different 
viscosities of ice-cream and on the very bottom 
right you can see the shear from the water. Water 
shear is nearly negligible the longer you crank. 
To get the shear force for any time you take the 
leftmost shear of the ice-cream graphs times 
center shaft surface area plus rightmost shear of 
ice-cream graph times ice-cream bucket surface 
area plus leftmost shear of ice water graph times 
the surface area of the ice-cream bucket. 

Figure 1. Velocity profile of ice-cream inside the 
bucket and water outside the bucket. The center 
shaft spins the opposite direction from the ice-
cream bucket. 
 Figure 3. Required Torque plotted against 

increasing viscosity of ice-cream due to freezing. 
 


