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ABSTRACT 
 

Hydrogen diffusion is believed to be one of the main 

mechanisms through which hydrogen enters a material and 

degrades its properties. By better understanding this process, 
materials resistant to hydrogen embrittlement can be produced. 

In this work, a 2-dimensional model of hydrogen diffusion 

through a uniform cross section material is constructed using 

Fick’s 2nd Law. Various concentration surface conditions are 

considered. For the Neuman-Dirichlet boundary condition 

hydrogen largely remains close to the surface of the sample and 

a majority of the sample only experiences a small increase in 

concentration. 

 

NOMENCLATURE 

• c: Concentration 

• 𝐷: Diffusion Coefficient 

• 𝑥: Thickness Variable 

• 𝑦: Height Variable 

• GB: Grain Boundary 

• TJ: Triple Junction 

 

 

INTRODUCTION 
 
Diffusion is a method of a molecular transport where small 

particles move through another material medium due to a 

concentration gradient. In this analysis, studies on hydrogen 

diffusion through nickel will be used as the basis for discussion 

and modelling.  

Metals are composed of smaller crystal units known as 

grains. Each grain is composed of an atomic lattice following a 

prescribed packing order (FCC for nickel). Diffusion occurs 

when hydrogen atoms move to locations that are more 

energetically favorable both in and around grains. Hydrogen 

preferentially migrates to locations such as sites in planes with 

lower atomic packing [1] or areas with lower internal stresses 

[2]. 

The grains and the interaction between grains influences 

diffusion. Interfaces between two grains known as GBs have 

been seen to directly influence diffusion. GBs of various types 
and orientations can acts as hydrogen traps or accelerators [3] [4] 

[5] [6]. Additionally, interfaces between three grains known as 

triple junctions (TJs) act as superconductors for hydrogen 

diffusion [7] [8]. These all-cause anisotropy of diffusion on a 

microstructural level. Further, it has been shown that hydrogen 

diffusion through single crystal nickel is anisotropic in nature 

[2].   

While diffusion occurs anisotropically on a microstructural 

scale, generally it occurs isotopically on a macrostructural scale. 

This is due to the fact that averaging randomly sized and oriented 

grains over large grain counts, tends to produce general patterns. 

Representative and statistical volume elements define how many 
grains are required to give an accurate representation of these 

properties for the bulk material.  

The constructed model is based on the assumption that 

diffusion behaves isotopically. Fick’s Laws and the other tools 

used to model diffusion would need to be modified to account 

for directional diffusion in very small samples.   

 

 

METHODS 
1. Experimental Procedures 

The model was built based on the ASTM standards for 
electrochemically measuring hydrogen diffusion through a 

material [9]. The setup involves two chambers known as 

Devanathan cells. Each cell has an identical hole or opening 

where a material sample is clamped between the two cells. 

Aqueous sodium hydroxide or another strong electrolyte is 

added to both cells such that the fluid and material interface 

keeps the fluid from leaking.  The area of the sample exposed to 

the fluid is where hydrogen can diffuse through the material and 

transfer between cells. 
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Figure 1: Diagram of the experimental setup used as the foundation of 
the model. [9] 

 

Each cell is connected to a potentiostat to regulate the 

voltage applied to the system. Reference and auxiliary electrodes 

are inserted into the fluid while a working electrode is connected 

directly to the sample. By running electricity through a cell, it 
causes the hydrogen ions to disassociate. In this state they are 

positively charged which draws them toward the electrode acting 

as the anode. Depending on which way the voltage is applied this 

can be either the sample or auxiliary electrode. Effectively this 

allows the hydrogen concentration gradient to be controlled, 

either massing hydrogen by the sample or by an electrode far 

from the sample.  

Prior to an experiment, both potentiostats are configured to 

draw hydrogen toward the auxiliary electrode in a pre-charge. 

This creates a low concentration of hydrogen in the electrolyte 

directly next to the sample causing hydrogen to move toward and 

eventually exit into the nearest Devanthan cell. By doing this for 
a sufficient amount of time, it can be assumed that nearly all 

hydrogen has been removed from the sample. 

Afterwards, to measure the effective diffusion of hydrogen 

through a sample, the current flow in one of the potentiostats is 

reversed. This causes hydrogen to amass near the surface of a 

single side of the sample. Hydrogen now diffuses through the 

sample as it moves from a high concentration toward a lower 

concentration. When it travels completely through the sample, it 

is drawn toward the auxiliary electrode, wicking it away from 

the surface thus maintaining the concentration gradient.  

 
2. Diffusion Coefficient 

Using the procedure outlined above, the effective diffusion 

coefficient D can be calculated as follows: 

𝐷 =
6𝐿2

𝑡𝑙𝑎𝑔

 

Where L is the thickness of the sample and tlag is a time lag 

constant associated with the diffusion. It is computed as the time 

it takes for the current to reach 63% of its peak value as measured 

by the reference electrode. The increase in current is caused by 

the motion of the hydrogen ions. Electricity is defined as the 

energy associated with moving ions. Therefore, as hydrogen ions 

moves through the sample the current will increase as a typical 

1st Order ODE until a steady state is reached. For this work it is 

assumed 𝐷 = 5.67 × 10−14 𝑚2

𝑠
 (compare to [2] and [3]). 

 

3. Fick’s 2nd Law 

Fick’s law is used to model diffusion. It is given by: 

𝜕2𝑐

𝜕𝑥2
=

1

𝐷

𝜕𝑐

𝜕t
 

Mathematically, it is identical to the heat equation. Modifying it 
for 2-dimensions yields: 

𝜕2𝑐

𝜕𝑥2
+

𝜕2𝑐

𝜕𝑦2
=

1

𝐷

𝜕𝑐

𝜕t
 

Where x and y correspond to the thickness and the height of the 

sample respectively. 

 

 

4. Boundary and Initial Conditions 

The boundary and initial conditions of the problem are 

defined as follows: 

𝜕

𝜕𝑥
𝑐(0, 𝑦, 𝑡) = 𝑓0     Neuman 

𝑐(𝐿, 𝑦, 𝑡) = 0     Dirichlet 
𝑐(𝑥, 0, 𝑡) = 0     Dirichlet 
𝑐(𝑥, 𝑀, 𝑡) = 0    Dirichlet 
𝑐(𝑥, 𝑦, 0) = 0                      

The concentration at x = 0 will be some value described by the 

concentration function created by the electrodes. Under standard 

conditions this should be constant or the concentration gradually 

decreasing over time. Using a Neuman condition here signifies 

that no hydrogen will leave the sample through the surface that 

it enters in through.  The wicking effect on the other side of the 

sample should behave as a Dirichlet condition as the hydrogen is 

quickly moved away producing a concentration of 0 for all time. 

The top and bottom edges of the sample are in contact with the 

air and therefore, are not anticipated to play a strong role in the 
diffusion interaction, especially because the height of the sample 

is significantly larger than the thickness. 

 

 

5. Solution 

Solving Fick’s 2nd Law with the listed boundary and initial 

conditions yields. 

𝑐(𝑥, 𝑦, 𝑡) =
4𝐷

𝐿𝑀
∑  

∞

𝑛=1

∑ 𝑐𝑛̅𝑚 cos(𝜆𝑛𝑥) sin(𝜇𝑚𝑦)

∞

𝑚=1

 

where: 
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𝑐𝑛̅𝑚 = ∫ −𝑓0(𝜏) 𝑒𝐷(𝜆𝑛
2 +𝜇𝑚

2 )(𝜏−𝑡)  𝑑𝜏

∞

𝜏=0

 

𝜆𝑛 = (𝑛 +
1

2
)

𝜋

𝐿
 

𝜇𝑚 =
𝑚𝜋

𝑀
 

For a full derivation of the solution see Appendix A. 

 

 
RESULTS 

 

Plotting the solution yields the following visual 
representations. Each was approximated with 25 terms for both 

series. Note the powers on the x axis and color bar. See attached 

videos for animation to show the transient responses. 

 
Figure 2: Concentration shown by color at steady state for a 𝑓0 = 𝐶. 
This signifies a uniform concentration at the samples surface. 
 

Figure 3: Concentration shown by color at steady state for a 𝑓0 = 𝐶 −

(0.01 − 𝑏𝑦). This signifies that the concentration of hydrogen 
preferentially forms towards the bottom of the sample compared to the 
top. 
 

Gradually decreasing concentration gradients were also 

modelled (𝑓0 = 𝑐 − 𝑏𝑡). See attached videos. 

 

As expected, these boundary conditions form circular pattern 

around the edge of high concentration because the upper and 

lower boundaries are maintained at a concentration of 0. The 

highly saturated region does not extend beyond the halfway point 

of the sample. Based on these results, pre-charging the saturated 
side of the sample should remove nearly all hydrogen in the 

sample. However, if the rate that hydrogen migrates from the low 

concentration side of the sample is low enough, we would expect 

to see an increased build-up of hydrogen within the sample. This 

would be modelled as a positive non-zero Dirichlet condition. It 

is anticipated that the regions of high concentration would 

expand further into the sample and overall concentration in the 

sample would increase. 

 

CONCLUSIONS 
 

Diffusion experiences a high order of exponential decay as it 
moves through the sample. Areas close to the high concentration 

experience a large uptick in concentration while the majority of 

the sample remains unaffected. Further investigation would be 

required to determine how the hydrogen would distribute when 

removed from the experiment. If a majority of hydrogen is 

irreversibly trapped, we would expect the concentration profile 

to remain relatively unaffected. On the other hand, if the 

hydrogen is still free to diffuse it would distribute itself more 

uniformly throughout the sample. 
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APPENDIX 
 

Appendix A: Derivation of Solution 

 

𝜕2𝑐

𝜕𝑥2
+

𝜕2𝑐

𝜕𝑦2
=

1

𝐷

𝜕𝑐

𝜕t
 

 

Solution of SLP for X-Boundary Conditions: Neuman – 

Dirichlet 

𝜆𝑛 = (𝑛 +
1

2
)

𝜋

𝐿
 

𝑋𝑛(𝑥) = cos(𝜆𝑛𝑥) 

‖𝑋𝑛(𝑥)‖2 =
𝐿

2
 

𝐹𝑥 {
𝜕2𝑐

𝜕𝑥2
} = −𝜆𝑛

2 𝑐𝑛̅ − 𝑓0𝑋𝑛(0) − 𝑓𝐿 𝑋𝑛′(𝐿) 

where 𝑓0 = 𝑓(0, 𝑦, 𝑡) and 𝑓𝐿 = 0 

Solution of SLP for y-Boundary Conditions: Dirichlet -- 

Dirichlet 

𝜇𝑚 =
𝑚𝜋

𝐿
 

𝑌𝑚(𝑦) = sin(𝜇𝑚𝑦) 

‖𝑌𝑚(𝑦)‖2 =
𝑀

2
 

𝐹𝑦 {
𝜕2𝑐

𝜕𝑦2
} = −𝜇𝑚

2 𝑐𝑚̅̅̅̅ + 𝑓0𝑌𝑚(𝑦) − 𝑓𝐿𝑌𝑚′(𝑀) 

where 𝑓0 = 𝑓𝐿 = 0 

Applying the Finite Fourier Transform to Fick’s Law: 

𝐹𝑥 {𝐹𝑦 {
𝜕2𝑐

𝜕𝑥2
+

𝜕2𝑐

𝜕𝑦2
=

1

𝐷

𝜕𝑐

𝜕t
}} = 𝐹𝑥 {𝐹𝑦 {

1

𝐷

𝜕𝑐

𝜕t
}} 

−𝜆𝑛
2 𝑐𝑛̅𝑚 − 𝑓0𝑋𝑛(0) − 𝜇𝑚

2 𝑐𝑛̅𝑚 =
1

𝐷

𝜕

𝜕𝑡
𝑐𝑛̅𝑚 

where 𝑐𝑛̅𝑚 = 𝐹𝑥{𝐹𝑦{𝑐(𝑥, 𝑦, 𝑡)} } 

Applying the Laplace Transform: 

ℒ{−𝜆𝑛
2 𝑐𝑛̅𝑚 − 𝑓0𝑋𝑛(𝑥) − 𝜇𝑚

2 𝑐𝑛̅𝑚} = ℒ {
1

𝐷

𝜕

𝜕𝑡
𝑐𝑛̅𝑚} 

−𝜆𝑛
2 𝐶𝑛𝑚 − ℒ{𝑓0𝑋𝑛(0)} − 𝜇𝑚

2 𝐶𝑛𝑚 =
𝑠

𝐷
𝐶𝑛𝑚 

where 𝐶𝑛𝑚 = ℒ{𝑐𝑛𝑚̅̅ ̅̅ ̅}  

Organizing Terms: 

𝐶𝑛𝑚 (
𝑠

𝐷
+ 𝜆𝑛

2 + 𝜇𝑚
2 ) = −ℒ{𝑓0𝑋𝑛(0)} 

𝐶𝑛𝑚 = −
1

𝑠
𝐷 + 𝜆𝑛

2 + 𝜇𝑚
2

ℒ{𝑓0𝑋𝑛(0)} 

𝐶𝑛𝑚 = −
𝐷

𝑠 − (−𝐷(𝜆𝑛
2 + 𝜇𝑚

2 ))
ℒ{𝑓0𝑋𝑛(0)} 

 where ℒ{𝑒−𝐷(𝜆𝑛
2 +𝜇𝑚

2 )𝑡} =
1

𝑠−(−𝐷(𝜆𝑛
2 +𝜇𝑚

2 ))
 

Take the Inverse Laplace Transform using the Convolution 

Integral: 

ℒ−1{𝐶𝑛𝑚} = ℒ−1 {−
𝐷

𝑠 − (−𝐷(𝜆𝑛
2 + 𝜇𝑚

2 ))
ℒ{𝑓0𝑋𝑛(0)}} 

𝑐𝑛̅𝑚 = −𝐷 (𝑒−𝐷(𝜆𝑛
2 +𝜇𝑚

2 )𝑡 ∗ 𝑓0𝑋𝑛(0)) 

𝑐𝑛̅𝑚 = −𝐷 ∫ 𝑒𝐷(𝜆𝑛
2 +𝜇𝑚

2 )(𝜏−𝑡)

∞

𝜏=0

𝑓0𝑋𝑛(0) 𝑑𝜏 
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 where 𝑋𝑛(0) = 1 

𝑐𝑛̅𝑚 = −𝐷 ∫ 𝑓0𝑒𝐷(𝜆𝑛
2 +𝜇𝑚

2 )(𝜏−𝑡)

∞

𝜏=0

 𝑑𝜏 

Solution of the Finite Fourier Transform: 

𝑐(𝑥, 𝑦, 𝑡) = ∑  

∞

𝑛=1

∑  𝑐𝑛̅𝑚

∞

𝑚=1

𝑋𝑛(𝑥)

‖𝑋𝑛(𝑥)‖2

𝑌𝑚(𝑦)

‖𝑌𝑚(𝑦)‖2
 

𝑐(𝑥, 𝑦, 𝑡) =
4𝐷

𝐿𝑀
∑  

∞

𝑛=1

∑ 𝑐𝑛̅𝑚 cos(𝜆𝑛𝑥) sin(𝜇𝑚𝑦)

∞

𝑚=1

 


