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Abstract
This paper seeks to explore the possibility of the
Doppler Effect in gravitational waves. The sys-
tem is modeled using the wave equation and the
two orbiting mass bodies are modeled as point
sources. The model showed some interesting re-
sults. In addition to the expected Doppler Ef-
fect, there is an uneven change in amplitude of
the waves. According to the model, the waves in
direction of motion are significantly larger then
the waves trailing behind.

Nomenclature
F Fourier Transformation

∗ Convolution

ω angular rate of orbiting objects

u Applied Fourier Transformation

a propagation speed

L Boundary in the x-direction

M Boundary in the y-direction

R angular rate of orbiting objects

S0 Magnitude of the point source

t time

x0 initial x position for the center of the orbit

Xn Eigenfunction

y0 initial y position for the center of the orbit

Ym Eigenfunction
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Introduction
Gravitational waves have been theorized for
over a hundred years, but their first direct ob-
servation was only made within the last ten
years. This is because they are based on the
still evolving field of quantum mechanics and
require incredibly precise instruments. Gravi-
tational wave are ripples in space time and are
caused by large masses orbiting each other such
as merging black holes or binary star systems[1].
Here a model of gravitational wave is made with
the wave equation. The orbiting mass bodies are
point sources and a velocity is added to the cen-
ter of rotation to facilitate the Doppler Effect.

Analysis
The Generalized Wave equation is given by

(1)∇2u =
1

a2
∂2u

∂t2

We will assume that the mass of the bodies is
equal so that they will orbit with the same radius
about their center of mass. We will approximate
the movement of the bodies in a circular orbit.To
represent a large mass object and the above as-
sumptions into the wave equation a source term
is added in the form

(2)S0 δ[x+R cos(ωt)− x0] δ[y
−R cos(ωt)− y0]

This equation will create a constant source
that will rotate about the center x0,y0 with a ra-
dius of R. The other mass will then have a shift
of π. The resulting wave equation then becomes

(3)
∇2u+ S0 δ[x+R cos(ωt)− x0] δ[y

−R cos(ωt)− y0] =
1

a2
∂2u

∂t2

In order to solve this equation boundary con-
ditions and initial condition values are needed.
We will assume that the objects are separated
from other sources of gravitational influences or
sources resulting in D-D boundary conditions.
Our initial conditions we will assume are zero
as well. Gravitational waves propagate indefi-
nitely, so the boundaries would extend out to in-
finity[1]. But since we need to be able to plot our
results, definite boundaries are needed. These
will be represented by L andM as shown in Fig.
1.

Figure 1: Boundary conditions Dirichlet,
Dirichlet in both x and y boundaries.

The equation can now be solved by Finite
Fourier Transformations and Laplace transfor-
mations[2], in which the solution should take on
the form

u(x, y, t) =
∞∑
n

∞∑
m

unm
Xn

||Xn||2
Ym

||Ym||2
(4)
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Boundary
Condition

Du(0) = f0
Du(L) = fL

Eigenvalues λn = nπ
L

Eigenfunctions sin (λnx)

Norm L
2

Operational
Property

−λ2
nun + f0X

′(0)
−fLX

′(L)
Solving the supplemental eigenvalue problem
for either the x or y finite Fourier Transform
will result in the properties listed in the table
above[2].
Using Fourier transformation on the general-

ized wave equation, the second derivative with
respect to x and y will result in

(5)F{∇2u]} = −λ2
nunm − µ2

munm

Transformations of the source terms are

(6)F{δ[x+R cos(ωt)− x0]}
= Xn (−R cos(ωt) + x0)

(7)F{δ[y −R sin(ωt) + y0]}
= Ym (R sin(ωt)− y0)

Using Fourier transformation in the x and y,
results in a Ordinary Differential equation. This
can be solved using the Laplace transformation.
The solution of the ordinary differential equation
for a single source becomes

(8)

unm

= S0

[
(λ2

n + µ2
m)a

2 sin((λ2
n + µ2

m)t)
]

∗ [Xn (−R cos(ωt) + x0)
Ym (R sin(ωt)− y0)]

Conclusions
As a control, the linear velocity of the center of
orbit was set to zero and the results can be seen
in Fig. 2. As expected we have the large masses
orbiting at the center with the waves spiraling
outward uniformly.

Figure 2: Two dimensional surface of the gravi-
tational waves.

As the center of rotation begins to translate in
the x-direction the waves begin to change shape.
The largest change is in the amplitudes of the
waves. As seen in Fig. 3 the waves in front
of the orbiting masses are much larger while the
trailing wave almost completely die out. This is
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likely due to the fact that the linear velocity of
the masses due to angular velocity is combine
with or subtract from the linear velocity of the
entire system.

Figure 3: Two dimensional surface of the gravi-
tational waves.

Figure 4: Top view of the two dimensional sur-
face of the gravitational waves.

Comparing Fig. 2 and Fig. 4, the more tradi-
tional Doppler Effect is evident. the wave length
of the stationary orbiting masses is longer than
the translating orbiting masses.

Future work
Other models to consider that are similar to this
problem statement would be considering other
orbiting paths of binaries systems. Many sys-
tems follow an elliptical path instead of a circu-
lar path. This will likely change the wave struc-
ture produced. Other things to include would be
to analyze the non-dimensional plot. This would
give a further analysis into the frequency of the
system.
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Appendix
See attached pdf scans of hand worked math.
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