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ABSTRACT 

 

A modified transient hot wire sensor known as the 

Needle Probe, developed to measure the thermal 

conductivity of molten salts, hinges its results based on 

the assumption that by limiting the amount of space a 

fluid has to move, convective heat transfer effects 

become negligible. This assumption was tested by 

modeling a simplified version of the Needle Probe 

system and varying the coefficient of convective heat 

transfer at small amounts. The results for a range of 

small heat transfer coefficients were compared. It has 

been deemed that the assumption that small convection 

coefficients can be ignored is valid.  

 

NOMENCLATURE 
𝒓𝟏 = 𝒓𝒂𝒅𝒊𝒖𝒔 𝒇𝒓𝒐𝒎 𝒄𝒆𝒏𝒕𝒆𝒓 𝒐𝒇 𝒑𝒓𝒐𝒃𝒆 𝒕𝒐 𝒉𝒆𝒂𝒕𝒊𝒏𝒈 𝒘𝒊𝒓𝒆 
𝒓𝟐 = 𝑜𝑢𝑡𝑡𝑒𝑟 𝑟𝑎𝑑𝑖𝑢𝑠 𝑜𝑓 𝑛𝑒𝑒𝑑𝑙𝑒 𝑝𝑟𝑜𝑏𝑒  
𝜶 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑖𝑡𝑦 

𝝀 =  𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 

𝒌 = 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 

𝒒′′ = ℎ𝑒𝑎𝑡 𝑓𝑙𝑢𝑥 

𝒉 =  𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 

𝑯 = ℎ/𝑘 

 

INTRODUCTION 

 

In recent years, there has been growing interest in the 

use of molten salts for power generation, both in 

Concentrated Solar Power (CSP) and in Molten Salt 

Reactors (MSR), a fourth gen nuclear reactor. Both 

designs use molten salts as the working fluid, which 

means in order to make safe and effective designs, we 

need a thorough understanding of the thermophysical 

properties of molten salts. Due to the fact that molten 

salts must be at high temperatures (500-800°C), are 

electrically conductive, and are highly corrosive, some 

of these properties, such as thermal conductivity and 

thermal diffusivity, are notoriously hard to measure. 

Very few salts have any measurements, and those that 

do tend to be inconsistent between studies. In their 

literature review, Magnusson et al highlights this 

problem with the measurements of thermal 

conductivity found in the literature for the salt FLiNaK 

(a Lithium-Fluoride, Sodium-Fluoride, Potassium 

Fluoride mix), as seen in figure 1. It is commonly 

believed there is such a disparity due to a lack of 

radiative and convective heat transfer effects in the 

different researchers’ models.  

 

 
Figure 1: Graph of reported thermal conductivity 

values of FLiNaK, as reported by Magnusson et al. 

 

Recently, Merritt et al designed a new sensor based on 

the transient hot wire method designed to measure 

thermal conductivity of molten salts, which they refer 

to as “the Needle Probe.” This probe is submerged in 

molten salts in a steady state environment, and then 

begins to heat the salt while recording temperature 

response. By fitting the data to a solved heat diffusion 

equation for a 3-layer system, thermal conductivity of 

the salt can be found.  

 

The model used is very complex, involving what is 

known as the thermal quadrupole technique (see Maillet 

et al for more details). The model also assumes that 

convective heat transfer between the probe and the salt 
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is zero by use of what is known as the concentric 

cylinders technique, which greatly limits the amount 

that the salt can flow. While the flow is greatly limited, 

it is hard to imagine that there is no flow at all, but rather 

that it is low enough that all convective heat transfer 

effects are irrelevant. This study aims to verify that 

assumption.  

 

A simplified model of the Needle Probe system was 

developed, looking only at conduction through the 

probe and the effects that convection at the boundary 

has on the temperature response.  

 

METHODS 

 

The basic concept of the Needle Probe is shown below 

in figure 2. The cylindrical probe is submersed in salts 

while heating wires down the length of the probe adds 

a transient response. A thermocouple measures the 

temperature response at the wires.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Model of Crucible, Needle Probe, and Molten 

Salts 

 
 

To begin, the differential equation for a temperature 

distribution was considered. Because the crucible, salts, 

and probe are of annular nature (cylindrical coordinates 

most appropriate), this solution path was considered.  

 

𝝏𝟐𝑻

𝝏𝒓𝟐
+

𝟏

𝒓

𝝏𝑻

𝝏𝒓
=

𝟏

𝜶

𝝏𝑻

𝝏𝒕
    

 

Initial values and boundary conditions were key to 

defining the solution path and were chosen as follows: 

Initial value and Boundary conditions:  

𝑇(𝑟, 0) = 0 

𝜕𝑇

𝜕𝑟
(𝑟, 𝑡) = −

𝑞′′

𝑘
 𝑁𝑒𝑢𝑚𝑎𝑛𝑛 

𝑘
𝜕𝑇

𝜕𝑟
(𝑟2) + 𝑇(𝑟2)ℎ = 0 𝑅𝑜𝑏𝑖𝑛 

Key Assumptions in this model were that: 

1. The probe is an infinitely long cylinder 

2. System is axisymmetric  

3. Materials are homogeneous and isentropic 

(thermal conductivity does not vary within 

material) 

With the ordinary differential heat conduction equation 

in mind, the needle probe and system were modeled 

with a steady state and transient solution. Those 

solutions are as derived below.  

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
= 0 

𝑇𝑠𝑠 = 𝑐1 + 𝑐2 ln(𝑟)  

Solving for the constants yielded for c2:  

 𝒄𝟐 = −
𝒓𝟏𝒒′′

𝒌
 

With this first constant represented symbolically, the 

second constant could be solved by substituting in the 

solution such that,    

𝑘
𝑑𝑇

𝑑𝑟
(𝑟2) + 𝑇(𝑟2)ℎ =  0 

[… ] 

𝒄𝟏 =
𝒒′′𝒓𝟏

𝒉𝒓𝟐

+
𝒓𝟏𝒒′′

𝒌
𝒍𝒏(𝒓𝟐) 

With constants derived, substituting c1 and c2 into the 

steady state temperature equation yields 

𝑇𝑠𝑠 =
𝑞′′𝑟1

ℎ𝑟2

+
𝑟1𝑞′′

𝑘
𝑙𝑛(𝑟2) −

𝑟1𝑞′′

𝑘
ln(𝑟2)  

Next the transient solution was to be derived. This 

would represent the solution path of the temperature 

that is changing over time.  

Beginning with equation 1, the transient solution is 

derived with a combination of separation of variables 

and the Strum-Liouville Theorem.  

𝑅′′

𝑅
+

1

𝑟

𝑅′

𝑅
=

1

𝛼

𝑇′

𝑇
= 𝜇          

To solve the constants in this SLP problem, a few key 

substitutions were used in combination with a linear 

algebra approach, using the determinate to simplify the 

solution path.  

The solution path was greatly simplified and followed 

by referencing an annular-disk D-R approach, solved 

by Laura Hansen on page 526 of the course textbook. 

In general, this solution was: 

𝑟2 

𝑟1 

Crucible 

Molten 

Salts 

Needle 

Probe Heating 

Wire 

[2] 

[1] 

[3] 

[4] 
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𝑅′(𝑟1) =  −𝑐1𝜆𝐽1(𝜆𝑟1) − 𝑐2𝜆𝑌1(𝜆𝑟1) = 0  

This would yield the following: 

 

𝑎11 = 𝜆𝐽1(𝜆𝑟1) 

𝑎12 = 𝜆𝑌1(𝜆𝑟1) 

𝑎21 = −𝜆𝐽1(𝜆𝑟2) + 𝐻𝐽0(𝜆𝑟2) 

𝑎22 = −𝜆𝑌1(𝜆𝑟2) + 𝐻𝑌0(𝜆𝑟2) 

Such that 

[
𝑎11 𝑎12

𝑎21 𝑎22
] [

𝑐1

𝑐2
] = [

0
0

] → 𝑑𝑒𝑡 [
𝑎11 𝑎12

𝑎21 𝑎22
] = 0 

 

Positive roots at λ for this equation are the eigenvalues 

and the constants were solved to be 

𝑐1 =
1

𝑎21

   𝑎𝑛𝑑  𝑐2 = −
1

𝑎22

 

With eigenfunction 

𝑅𝑁 =
𝐽0(𝜆𝑛𝑟)

𝑎21𝑛

−
𝑌0(𝜆𝑛𝑟)

𝑎22𝑛

  

Applying the SLP solution further, yields the 

Temperature function solution with respect to time.  

𝑇′ − 𝛼𝜇𝑇 = 0  𝑤ℎ𝑒𝑟𝑒 𝜇 =  −𝜆2 

𝑇′ + 𝛼𝜆𝑛
2 𝑇 = 0 

𝑇𝑛(𝑡) = 𝑒−𝛼𝜆𝑛
2 𝑡 

Combining the Steady state and Transient Solutions 

then yielded 

𝑢(𝑟, 𝑡) = 𝑈(𝑟, 𝑡) + 𝑢𝑠𝑠(𝑟, 𝑡)      

𝒖(𝒓, 𝒕) = ∑ 𝒂𝒏𝑹𝒏𝑻𝒏 +
𝒒′′𝒓𝟏

𝒉𝒓𝟐

+
𝒓𝟏𝒒′′

𝒌
𝒍𝒏(𝒓𝟐)

−
𝒓𝟏𝒒′′

𝒌
𝐥𝐧(𝒓𝟐) 

Where  

𝑎𝑛 =

∫ −
𝑞′′

ℎ
(

𝐽0(𝜆𝑛𝑟)
𝑎21𝑛

−
𝑌0(𝜆𝑛𝑟)

𝑎22𝑛
) 𝑟𝑑𝑟

𝑟2

𝑟1

‖𝑅𝑛‖2
 

 

The complete derivation can be referenced in the 

appendix, but it is sufficient to say that this result was 

then used to solve eigenvalues and plot the solution of 

the temperature distribution with respect to radius, and 

with respect to time. 

 

RESULTS 

 

As the Needle Probe only takes measurements at the 

inner radius of the system for the first 15 to 30 seconds 

of the transient response, only the temperature response 

for the first 30 seconds at r1 was analyzed. The response 

was ran for three different, relatively low convection 

values, namely h = 0.01, h = 0.1, and h = 1.0. The 

comparison of these results are referenced in figure 3.  

 

 
Figure 3: Transient response at location r1 for t = 0 to 

30 seconds for three different h values.  

 

As can be seen in figure 3, for the first 30 seconds of 

the transient response, the effects of convective heat 

transfer for the three different values varied only a little. 

The effects of when h < 1 made very little difference to 

the overall response, while when h is equal to 1 only a 

relatively small difference was made.  

 

 

CONCLUSIONS 

 

This model is a highly simplified model, because of 

which this response is not accurate to what is actually 

occurring within the Needle Probe. For instance, it is 

not taking into effect the transient temperature response 

that the surrounding salts will have on the probe nor the 

radiative heat effects. This model does, however, 

provide a way to see to what extent low values of 

convective heat transfer has on the response of the 

probe.  

 

Low values for convective heat flow between the salt 

and the probe does have little to no effect on the probe’s 

temperature response. This validates the model used by 

Merritt et al which assumes due to the little motion 

present in the salt that the effects of convective heat 

transfer can be ignored.  

 

FUTURE MODELING 

 

Further mathematical iterations, namely extending and 

adapting the current model to study the conductive heat 

effects in the salt as a function of radius, can be 

explored. However, modeling this system as a whole 

gets increasingly complicated as the system is 

comprised of three independent layers, each with their 

own thermal conductivity and diffusivity, and the 

effects of radiative heat transfer between the probe and 

the crucible and the convective heat transfer between 

[5] 

[6] 

[7] 
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the crucible and the environment must all be accounted 

for. This leads to several individual yet related complex 

heat diffusion equations that must be solved. For more 

on this work, refer to the work done by Merritt et al.  
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APPENDIX 

 

Complete derivation of Steady State and Transient 

Temperature profile 

 

𝝏𝟐𝑻

𝝏𝒓𝟐
+

𝟏

𝒓

𝝏𝑻

𝝏𝒓
=

𝟏

𝜶

𝝏𝑻

𝝏𝒕
  

With initial conditions:  

𝑇(𝑟, 0) = 0 

𝜕𝑇

𝜕𝑟
(𝑟, 𝑡) = −

𝑞′′

𝑘
 𝑁𝑒𝑢𝑚𝑎𝑛𝑛 

𝑘
𝜕𝑇

𝜕𝑟2

+ 𝑇(𝑟2)ℎ = 0 𝑅𝑜𝑏𝑖𝑛 

Steady State Solution: 

𝜕2𝑇

𝜕𝑟2
+

1

𝑟

𝜕𝑇

𝜕𝑟
= 0 

𝑻𝒔𝒔 = 𝒄𝟏 + 𝒄𝟐𝐥𝐧 (𝒓) 

𝑑𝑇

𝑑𝑟
= 𝑐2(

1

𝑟
) 

𝑑𝑇

𝑑𝑟
(𝑟1) =  −

𝑞′′

𝑘
= 𝑐2 (

1

𝑟
)  𝑤ℎ𝑒𝑟𝑒 𝑐2 = −

𝑟1𝑞′′

𝑘
 

𝑘
𝑑𝑇

𝑑𝑟
(𝑟2) + 𝑇(𝑟2)ℎ =  0 

𝒌 (−
𝒓𝟏𝒒′′

𝒌
(

𝟏

𝒓𝟐

)) + (𝒄𝟏 + 𝒄𝟐 𝐥𝐧(𝒓𝟐))𝒉 =  𝟎 

−
𝒓𝟏𝒒′′

𝒓𝟐

+ 𝒄𝟏ℎ −
𝑟1𝑞′′

𝑘
ln(𝑟2) ℎ 

𝑐1ℎ −
𝑟1𝑞′′

𝑘
ℎ𝑙𝑛(𝑟2) =

𝒓𝟏𝒒′′

𝒓𝟐

 

𝑐1ℎ =
𝑞′′𝑟1

𝑟2

+
𝑟1𝑞′′

𝑘
𝑙𝑛(𝑟2)ℎ 

𝑐1 =
𝑞′′𝑟1

ℎ𝑟2

+
𝑟1𝑞′′

𝑘
𝑙𝑛(𝑟2) 

𝑇𝑠𝑠 =
𝑞′′𝑟1

ℎ𝑟2

+
𝑟1𝑞′′

𝑘
𝑙𝑛(𝑟2) −

𝑟1𝑞′′

𝑘
ln(𝑟2) 

𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑇𝑠𝑠 =
𝑞′′𝑟1

ℎ𝑟2

+
𝑟1𝑞′′

𝑘
𝑙𝑛(𝑟2) −

𝑟1𝑞′′

𝑘
ln(𝑟2) 

 

Transient Solution: 

𝝏𝟐𝑻

𝝏𝒓𝟐
+

𝟏

𝒓

𝝏𝑻

𝝏𝒓
=

𝟏

𝜶

𝝏𝑻

𝝏𝒕
  

𝑅′′

𝑅
+

1

𝑟

𝑅′

𝑅
=

1

𝛼

𝑇′

𝑇
= 𝜇 

𝑅′(𝑟1) = 0  

𝑘𝑅′(𝑟2) + ℎ𝑅(𝑟2) = 0 

𝑅′′

𝑅
+

1

𝑟

𝑅′

𝑅
= 𝜇 

𝑟2𝑅′′ + 𝑟𝑅′ − 𝑟2𝑅𝜇 = 0 

Note that 𝜆2 = −𝜇 

𝑟2𝑅′′ + 𝑟𝑅′ + [𝑟2𝜆2 − 0]𝑅 = 0   

𝑤ℎ𝑒𝑟𝑒 𝑣 = 0 

𝑅(𝑟) = 𝑐1𝐽0(𝜆𝑟) + 𝑐2𝑌𝑜(𝜆𝑟) 

𝑅′(𝑟) =  −𝑐1𝜆𝐽1(𝜆𝑟) − 𝑐2𝜆𝑌1(𝜆𝑟1) 

𝑅′(𝑟1) =  −𝑐1𝜆𝐽1(𝜆𝑟1) − 𝑐2𝜆𝑌1(𝜆𝑟1) = 0 

𝑐1𝜆𝐽1(𝜆𝑟) + 𝑐2𝜆𝑌1(𝜆𝑟1) = 0 

−𝑐1𝜆𝑘𝐽1(𝜆𝑟2) − 𝑐2𝑘𝜆𝑌1(𝜆𝑟2) + 𝑐1ℎ𝐽0(𝜆𝑟2)
+ 𝑐2ℎ𝑌𝑜(𝜆𝑟2) = 0 

𝑐1[𝜆𝐽1(𝜆𝑟2) + 𝐻𝐽𝑜(𝜆𝑟2)] + 𝑐2[𝜆𝑌1(𝜆𝑟2) + 𝐻𝑌0(𝜆𝑟2)
= 0 

𝑐1𝜆𝐽1(𝜆𝑟1) + 𝑐2𝜆𝑌1(𝜆𝑟1) = 0  

𝑎11 = 𝜆𝐽1(𝜆𝑟1) 

𝑎12 = 𝜆𝑌1(𝜆𝑟1) 

𝑎21 = −𝜆𝐽1(𝜆𝑟2) + 𝐻𝐽0(𝜆𝑟2) 

𝑎22 = −𝜆𝑌1(𝜆𝑟2) + 𝐻𝑌0(𝜆𝑟2) 

𝐻 =
ℎ

𝑘
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[
𝑎11 𝑎12

𝑎21 𝑎22
] [

𝑐1

𝑐2
] = [

0
0

] → 𝑑𝑒𝑡 [
𝑎11 𝑎12

𝑎21 𝑎22
] = 0 

𝑎11 ∙ 𝑎22 − 𝑎12 ∙ 𝑎21 = 0 

[𝜆𝐽1(𝜆𝑟1) ∙ −𝜆𝑌1(𝜆𝑟2) + 𝐻𝑌0(𝜆𝑟2)] − [𝜆𝑌1(𝜆𝑟1) ∙
−𝜆𝐽1(𝜆𝑟2) + 𝐻𝐽0(𝜆𝑟2)] = 0 

Positive roots at λ for this equation are the eigenvalues 

𝑎21𝑐1 + 𝑎22𝑐2 = 0 

𝑐1 =
1

𝑎21

   𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑐2 = −
1

𝑎22

 

With eigenfunction 

𝑅𝑁 =
𝐽0(𝜆𝑛𝑟)

𝑎21𝑛

−
𝑌0(𝜆𝑛𝑟)

𝑎22𝑛

 

𝑁𝑜𝑟𝑚 =  ‖𝑅𝑛‖2 = ∫ 𝑟𝑅𝑛
2𝑑𝑟

𝑟2

𝑟1

 

𝑇′ − 𝛼𝜇𝑇 = 0  𝑤ℎ𝑒𝑟𝑒 𝜇 =  −𝜆2 

𝑇′ + 𝛼𝜆𝑛
2 𝑇 = 0 

𝑇𝑛(𝑡) = 𝑒−𝛼𝜆𝑛
2 𝑡 

Combining the Steady state and Transient Solutions 

𝑈(𝑟, 𝑡) = 𝑅𝑛𝑇𝑛 = ∑ 𝑎𝑛𝑅𝑛𝑇𝑛 

𝑈(𝑟, 0) = 𝑢𝑜 − 𝑢𝑠 = 0 −
𝑞′′

ℎ
= −

𝑞′′

ℎ
 

𝑎𝑛 =
∫ −

𝑞′′

ℎ
𝑅𝑛𝑟𝑑𝑟

𝑟2

𝑟1

‖𝑅𝑛‖2
=

∫ −
𝑞′′

ℎ
𝑅𝑛𝑟𝑑𝑟

𝑟2

𝑟1

∫ 𝑟𝑅𝑛
2𝑑𝑟

𝑟2

𝑟1

 

𝑢(𝑟, 𝑡) = 𝑈(𝑟, 𝑡) + 𝑢𝑠𝑠(𝑟, 𝑡) 

𝑢(𝑟, 𝑡) = ∑ 𝑎𝑛𝑅𝑛𝑇𝑛 +
𝑞′′𝑟1

ℎ𝑟2

+
𝑟1𝑞′′

𝑘
𝑙𝑛(𝑟2)

−
𝑟1𝑞′′

𝑘
ln(𝑟2) 

 

𝑎𝑛 =

∫ −
𝑞′′

ℎ
(

𝐽0(𝜆𝑛𝑟)
𝑎21𝑛

−
𝑌0(𝜆𝑛𝑟)

𝑎22𝑛
) 𝑟𝑑𝑟

𝑟2

𝑟1

‖𝑅𝑛‖2

=

∫ −
𝑞′′

ℎ
(

𝐽0(𝜆𝑛𝑟)
𝑎21𝑛

−
𝑌0(𝜆𝑛𝑟)

𝑎22𝑛
) 𝑟𝑑𝑟

𝑟2

𝑟1

∫ 𝑟 (
𝐽0(𝜆𝑛𝑟)

𝑎21𝑛
−

𝑌0(𝜆𝑛𝑟)
𝑎22𝑛

)
2

𝑑𝑟
𝑟2

𝑟1

 

 
 

 

 

 

 

 


