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Abstract

Stress waves in solid materials may be modeled using the

wave equation. When waves meet material boundaries,

there is reflection and transmission that must be accounted

for to ensure safe, optimal material performance.

Nomenclature

ur = reflected wave function

ut = transmitted wave function

ui = incident wave function

cn = wave speed in the nth material
L,M = location of material/domain boundaries

λ = wavelength

A, B, C = wave amplitudes

xn = starting position of the nth wave function
P = pulse length

Introduction

The wave equation can be used to mode physical phenom-

ena from the transverse motion of oceanic surface waves

to the longitudinal pulsations of sound, pressure, and

stress waves in fluids and solids. The two-dimensional

wave equation for waves traveling in a single medium is,

in a number of cases, solvable using integral transform

methods [1, 2, 3, 4]

When a traveling wave encounters a change of medium,

part of the incident wave is reflected back, and part of the

wave is transmitted into the new medium. Interference

between reflected waves can cause unexpected wave in-

tensities in a thin “wall” of material; it is therefore desir-

able to have develop a method that allows for the analysis

of this case. The introduction of variable material proper-

ties introduces a step change in the variable c in the wave
equation, which represents the wave speed in the material

(or speed of sound).

In this paper will be developed a method for analyzing

wave propagation across material boundaries for the one-

dimensional wave equation.

Method

This problem consists of three distinct regions (See Fig.

1). In the first region, a pulse is beginning to propagate

from the left at a speed c1. At the right is a material which
may have a different speed constant c2, resulting in a re-
flected wave back into Region 1 and a transmitted wave

into Region 2, which initially contains no waves. The

transmitted wave from Region 1 travels through Region 2

with a change in velocity and amplitude, then into Region

3, resulting in additional reflected and transmitted waves.

For the purposes of this paper, a wave pulse will be de-
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Figure 1: The simplest generalizable case for propagating

a wave through material boundaries involves a single slab

(Region 2) of material with a speed coefficient that differs

from its surroundings (Region 1 and Region 3, which are

semi-infinite).

fined with a finite duration and a simple offset-sine-wave

form such that the wave intensity increases smoothly from

zero up to twice the amplitude, then back down to zero.

0.1 Wave pulse equation

A wave pulse may be modeled by a modification of the

d‘Alembert wave solution as follows:

(
H(xn−cnt)−H(xn+λn−cnt)

)
un(λn, cn, xn, P, x, t)

(1)

By applying a moving filter function, we are able to

isolate a part of the wave form, bounded between xn and

xn + P , where length of the pulse is denoted P , and with
xn as the location of the left-hand endpoint of the pulse

function.

The function un can actually be any function, but for

the implementation in this paper it will take the form:

un = An +An cos
(2π
λn

(x− λn

2
− xn − cnt)

)
(2)

where An is the amplitude of the pulse, λn is the wave-

length, cn is the wave velocity, and xn is the location of

the left-hand-side endpoint of the wave pulse.

0.2 Material boundary conditions

Let an incident wave ui traveling from left to right towards

a material boundary at location x = L has amplitude A,
wavelength λ, and speed c1. At the x = L boundary,

the material properties change immediately to new wave

speed c2.
For continuity of the wave form, the following condi-

tions must apply:

ui(L, t) + ur(L, t) = ut(L, t) (3)

∂

∂x
ui(L, t) +

∂

∂x
ur(L, t) =

∂

∂x
ut(L, t) (4)

From these conditions can be derived the necessary

change in amplitude and effective wavelength that occurs

between the incident, reflected, and transmitted waves.

For a pulse of amplitude A and wavelength λA, moving

from material with speed c1 to material with speed c2 we
obtain the following relations:

B = A
c2 − c1
c2 + c1

(5)

C = A
2c2

c2 + c1
(6)

B is the amplitude associated with the reflected wave,

and C is the amplitude associated with the transmitted

wave.

λC = λA
c2

c1
(7)

Note that the reflected pulse has the same speed

(opposite-sign velocity) of the incident pulse, and the

same wavelength as well.

The concept of “boundary conditions” can now be ap-

plied to solve for the starting positions of the reflected and

transmitted waves. The calculated position is such that the

incident, reflected, and transmitted pulses all meet the ma-

terial boundary at the same time.

0.3 Implementation of wave equations

Apulse function may be initialized with the following pa-

rameters:

• Amplitude A
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Figure 2: The incident pulse meets the wall at x = 2
simultaneously with the reflected pulse and transmitted

pulse. All waves are summed only in the regions in which

they apply, so at this time frame the reflected and trans-

mitted waves are “virtual,” and not included in the wave

intensity calculation where presently located.

• Wavelength λ

• Starting Position x1, x2

• Velocity c

We therefore can define a Pulse object that makes

these parameters conveniently available and extensible for

many pulse functions. The following algorithm generates

pulse functions such that each Region is assigned pulse

functions representing every incident, reflected, and trans-

mitted pulse. Mathematically, pulse amplitudes will de-

cay below a threshold after a certain number of transmis-

sion/reflection events. This is easily handled with a while
loop. See Algorithm 1.

Algorithm 1 Generation of Pulse Functions

1: Initialize N Regions R1: Rn with speed of sound c1
to cn

2: Initialize pulse contained in Region 1 with speed c1
moving toward Region 2→Incident

3: Calculate reflected pulse back into Region 1→L1

4: Calculate transmitted pulse into Region 2→R2

5: while A > threshold do
6: L2 = Reflect(R2)
7: R3 = Transmit(22)
8: R2 = Reflect(L2)
9: L1 = Transmit(L2)
10: end while

11: for pulse in pulseList do GenerateFunction(pulse)
12: end for

return List of Pulse Functions per region

Algorithm 2 Reflect

1: Inputs: Pulse object with A, λ, c, x0,

2: Boundary Location L and cL on other side of bound-

ary

3: AR = Pulse.Amplitude*(c2-c1)/(c2+c1)
4: xR = L + L -Pulse.position - Pulse.wavelength
5: ReflectedPulse = PulseObject(AR,Pulse.wavelength,xR,

-Pulse.speed)
return ReflectedPulse

Algorithm 3 Transmit

1: Inputs: Pulse object with A, λ, c, x0,

2: Boundary Location L and cL on other side of bound-

ary

3: AT = Pulse.Amplitude*(2*c2)/(c2+c1)
4: λT = c2/c1*Pulse.wavelength
5: xT = -c2/c1 * (-Pulse.position+L+A.wavelength) +
L + λT

6: TransmittedPulse = PulseObject(AT , λT , xT ,

Pulse.speed *cL)
return TransmittedPulse
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Results

Four initial cases are completely simulated and re-

sults are available at https://github.com/tekajuna/
pulse-thru-wall.
For each case, c1 = 2.0, c2 = 8.0, the wall spans from

x = 2.0 to x = 3.0, and one pulse is located with the left
endpoint at the origin with an amplitude of 0.5. A second

pulse is also initialized as follows:

1. Second pulse is located at x = −2 with amplitude
0.5 (Pulses separated by one wavelength)

2. Second pulse is located at x = −1 with amplitude
0.5 (Two pulses appear as a single sine wave with

two full periods)

3. Second pulse is located at x = −0.5 with amplitude
0.5 (Sine wave with a flattened top due to partial in-
terference)

4. Second pulse is located at x = −1 with amplitude
−0.5 (Second pulse is reflected across x-axis, result-
ing in the appearance of a full-period sine wave with

amplitude of 1 and no vertical offset)

Two parameter variations studies were performed. In

the first, the starting position of one of two identical pulses

is varied. The stationary pulse is located at the origin, as in

the Cases 1 through 4. The varied-position pulse is located

at positions between x = −1 and x = 1. At x = 0, the
two pulses constructively interfere, resulting in a single

pulse with double amplitude. For each starting position

of the second pulse, the maximum wave intensity value in

Region 2 is plotted.

The second parameter variation study is similar to the

first, but the second pulse has negative amplitude, result-

ing in perfectly destructive interference when x = 0. Peak
Region 2 wave intensity is found when x = ±0.5

Conclusions

Amethod for analyzing wave pulse behavior across mate-

rial boundaries has been developed. The method devel-

oped involves a single slab of material sandwiched be-

tween semi-infinite regions of the same material prop-

erty c1, but adding additional finite regions is easily ac-
complished. Present development includes one particular

Figure 3: Starting location of one pulse was variedwith re-

spect to the starting location of the other, effectively vary-

ing the relative time-of-arrival of two pulses to the first

material boundary. Both pulses have positive amplitude,

resulting in varying degrees of constructive interference.

The peak wave intensity within Region 2 is maximized

when the pulses totally interfere constructively, resulting

in a wave amplitude over three times that of the individual

pulses

Figure 4: The second pulse in this case has a negative am-

plitude. Starting location of this pulse was varied with re-

spect to the starting location of the other. Varying degrees

of destructive interference is observed. The peak wave in-

tensity within Region 2 is maximized when there is a cer-

tain amount of offset between the negative and positive

pulses.
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type of wave pulse, but the concepts are easily extensible

to other pulse functions, such as semi-infinite, sawtooth,

Gaussian, and Lorentzian pulse/wave variants.

Further development should aid in the interpretation of

the pulse intensity.
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Appendix

Julia code for pulse analysis and plotting

using Plots

struct Pulse #Characteristics of a pulse
amplitude
wavelength
position # Position of the LHS of the pulse
speed

end

function filter(A::Pulse, x1,x2,x,c,t,f)
if x < x1+c*t # pulse is defined only on interval x1 to x2

return 0
elseif x > x2 + c*t

return 0
else

return f(x,t) # Pulse can have any functional definition between the endpoints
end

end

function cosWaveFunction(A,lambda,c,x1)
function wave(x,t)

return A + A*cos(2*pi/lambda*(x - 0.5*lambda -x1 - c*t) ) #centers the pulse within [x1, x2]
end
return wave

end

function generatePulse(A::Pulse)
# TODO: Specify location and direction of the pulse
function pulse(x,t)

x1 = A.position # Pulse is located left of the origin
x2 = A.position + A.wavelength # RHS of the pulse is at the origin
f = cosWaveFunction(A.amplitude,A.wavelength,A.speed,A.position)
return filter(A,x1,x2,x,A.speed,t,f)

end
return pulse

end

function Reflect(A::Pulse, L,cL)
c1 = abs(A.speed) # Characteristic Speed of the Incidient wave
c2 = abs(cL) # Characteristic speed on the OTHER side of "L"
ampR = A.amplitude*(c2-c1)/(c2+c1) # Calculate amplitude of the reflected wave (absolute value)
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lamR = A.wavelength # Reflected wave has same wavel. as incident
posR = L + L -A.position - A.wavelength #Reflected wave is positioned
Rpulse = Pulse(ampR,lamR,posR,-A.speed)
return Rpulse

end

function Transmit(A::Pulse,L,cL)
c1 = abs(A.speed) # Velocity of the incident wave
c2 = abs(cL) # Speed of target material
ampT = A.amplitude * 2*c2/(c2+c1)
lamT = c2 *A.wavelength/c1
posT = -c2/c1*(-A.position+L+A.wavelength) +L +lamT
Tpulse = Pulse(ampT,lamT,posT,sign(A.speed)*cL)
return Tpulse

end

function calculatePulses(inc,c1,c2, L, M)
Reg1 =[]
Reg2 =[]
Reg3 =[]
# R Right-moving
# L Left-moving
# Number indicates region
R1 = inc # Incident Wave
push!(Reg1,R1)
L1 = Reflect(inc,L,c2) # Reflects toward negative infinity
push!(Reg1,L1)
R2 = Transmit(inc,L,c2) # Transmits toward M
push!(Reg2,R2)
# L2 = Reflect(R2) # Internal Reflection
# R3 = Transmit(R2) # Transmits toward infinity
# L1 = Transmit(L2) # Transmits to negative infinity
# R2 = Reflect(L2) # internal Reflection
# L2 = Reflect(R2)
# R3 = Transmit(L2)
# generates:
# L1, R2
# L2, R3
# L1. R2
# L2, R3

while abs(R2.amplitude) > 1e-3 #Calculate reflections until amplitude goes below threshold
L2 = Reflect(R2,M,c1) # Internal Reflection
push!(Reg2,L2)
R3 = Transmit(R2,M,c1) # Transmits toward infinity
push!(Reg3,R3)
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L1 = Transmit(L2,L,c1) # Transmits to negative infinity
push!(Reg1,L1)
R2 = Reflect(L2,L,c1)
push!(Reg2,R2)

end
# println(length(Reg1))
# println(length(Reg2))
# println(length(Reg3))
#Transform pulse objects to functions
for i = 1:length(Reg1)

Reg1[i] = generatePulse(Reg1[i])
end
for i = 1:length(Reg2)

Reg2[i] = generatePulse(Reg2[i])
end
for i = 1:length(Reg3)

Reg3[i] = generatePulse(Reg3[i])
end

return Reg1, Reg2, Reg3
end

function testPulseGeneration()
c1 = 8.0
c2 = 2.0
L = 1.0
M = 3.0
N = 5.0
initialPulse = Pulse(1.0,1,0,c1)
R1,R2,R3 = calculatePulses(initialPulse,c1,c2, L, M)
println("Neat")

end

function analyze()

end

function testRegions()
c1 = 2.0
c2 = 8.0
L = 2.0
M = 3.0
N = 5.0
initialPulse = Pulse(0.5,1,0,c1)
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R1,R2,R3 = calculatePulses(initialPulse,c1,c2, L, M)
additionalPulse=Pulse(-0.5,1,-0.5,c1)
R1b,R2b,R3b = calculatePulses(additionalPulse,c1,c2, L, M)

# A = generatePulse(initialPulse)
# push!(R1,A)
# B = generatePulse(Reflect(initialPulse,L,c2))
# C = generatePulse(Transmit(initialPulse,L,c2))
# push!(R1,B)
# push!(R2,C)
tvec = 0:0.01:5.0
x1 = 0.0:0.01:L
x2 = L:0.01:M
x3 = M:0.01:N
for i = 1:length(tvec)

t = tvec[i]
# plot(x,A.(x,t),label="I")
# plot!(x,B.(x ,t),label="R1")
# plot!(x,C.(x,t),label="T1")
# u1 = R1[1].(x1,t) + R1[2].(x1,t)
u1 = sum([R1[i].(x1,t) for i in 1:length(R1)])+sum([R1b[i].(x1,t) for i in 1:length(R1b)])
u2 = sum([R2[i].(x2,t) for i in 1:length(R2)])+sum([R2b[i].(x2,t) for i in 1:length(R2b)])
u3 = sum([R3[i].(x3,t) for i in 1:length(R3)])+sum([R3b[i].(x3,t) for i in 1:length(R3b)])
# plot(x1,A.(x1,t)+B.(x1,t))
plot(x1,u1)
plot!(x2,u2)
plot!(x3,u3)
# plot!(x2,C.(x2,t))
# plot!(x3,zeros(length(x3)))
vline!([L,M])
ylims!((-2,2))
if i <10

savefig("nice4/Thing00"*string(i)*".png")
elseif i < 100

savefig("nice4/Thing0"*string(i)*".png")
else

savefig("nice4/Thing"*string(i)*".png")
end

end

end

function varyPulseSpacing()
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c1 = 2.0
c2 = 8.0
L = 2.0
M = 3.0
N = 5.0
initialPulse = Pulse(-0.5,1,0,c1)
R1,R2,R3 = calculatePulses(initialPulse,c1,c2, L, M)

xAddl = -1:0.1:1 # Vary Second Pulse location; otherwise pulses are identical
maxR2 = []

for k = 1:length(xAddl)
additionalPulse=Pulse(0.5,1,xAddl[k],c1)
R1b,R2b,R3b = calculatePulses(additionalPulse,c1,c2, L, M)
tvec = 0:0.01:5.0
x1 = 0.0:0.01:L
x2 = L:0.01:M
x3 = M:0.01:N
maxtemp=0 # Reset max pulse intensity for the current initial pulse spacing
for i = 1:length(tvec)

t = tvec[i]
# plot(x,A.(x,t),label="I")
# plot!(x,B.(x ,t),label="R1")
# plot!(x,C.(x,t),label="T1")
# u1 = R1[1].(x1,t) + R1[2].(x1,t)
u1 = sum([R1[i].(x1,t) for i in 1:length(R1)])+sum([R1b[i].(x1,t) for i in 1:length(R1b)])
u2 = sum([R2[i].(x2,t) for i in 1:length(R2)])+sum([R2b[i].(x2,t) for i in 1:length(R2b)])
u3 = sum([R3[i].(x3,t) for i in 1:length(R3)])+sum([R3b[i].(x3,t) for i in 1:length(R3b)])
if maximum(abs.(u2)) > maxtemp

maxtemp = maximum(abs.(u2))
end

end
push!(maxR2,maxtemp)

end
plot(xAddl,maxR2)
xlabel("Pulse Spacing")
ylabel("Max Wave Intensity")
savefig("figs/PulseSpacingReverse.png")

end
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function testdalambert()
amp = 0.5
wavel=2
c1 = 2.0
c2 = 3.0
L = 1.0 # Position of the first wall, transitioning from c1 to c2
M = 3.0
N = 5.0
initialPulse = Pulse(amp,wavel,-wavel,c1)
A = generatePulse(initialPulse) # Generate Incident pulse # Amplitude, wavelength, LHS location
Rpulse = Reflect(initialPulse,L,c2)
B = generatePulse(Rpulse)
Tpulse = Transmit(initialPulse,L,c2)
C = generatePulse(Tpulse)
D = generatePulse(Reflect(Tpulse,M,c1))
E = generatePulse(Transmit(Tpulse,M,c1))
# t = 0
tvec = 0.0:0.1:8.0

# R1 0 to L
# R2 L to M
# R3 M to N

x = -2.0:0.01:N

for i in range(1,length(tvec);step=1)
t = tvec[i]
plot(x,A.(x,t),label="Incident")
plot!(x,B.(x ,t),label="Reflected")
plot!(x,C.(x,t),label="Transmitted")
# plot!(x,D.(x,t),label="R2")
# plot!(x,E.(x,t),label="T2")
vline!([L,M],label=nothing)
ylims!((-2,2))
plot!(legend=:bottomleft)

# legend
savefig("TP/Thing"*string(i)*".png")

end

end
if abspath(PROGRAM_FILE) ==@__FILE__

# testdalambert()
# testRegions()
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# testPulseGeneration()
varyPulseSpacing()

end
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