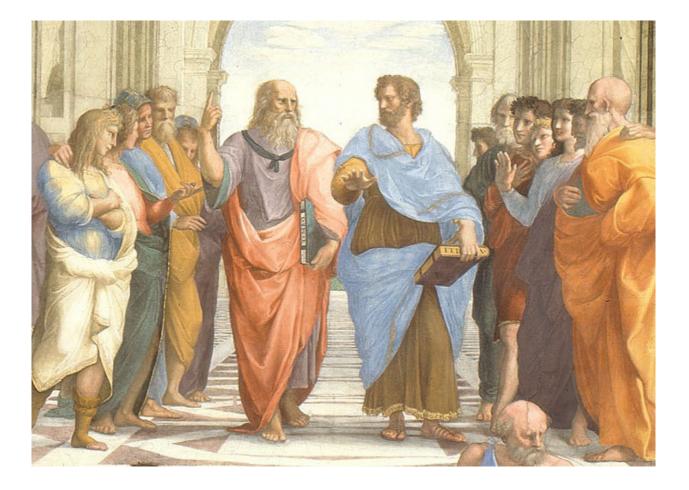
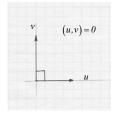
ME-505 FALL 2019

FINAL EXAM



1. (2) Banach and Hilbert Spaces.



Stefan Banach (1892–1945)

Consider the Hilbert space $L_2(0,L)$ (Chapter VI, p. 432) with the inner product $(u,v) = \int_0^\infty u(x)v(x)dx$. If the function $f(x) \in L_2(0,L)$ is orthogonal to all functions $\sin\left(\frac{n\pi}{L}x\right)$ for all n = 1, 2, ..., then what is this function f(x)? Justify your answer.

i) **Given:**
$$f(x)$$
 is orthogonal to $\sin\left(\frac{n\pi}{L}x\right)$ on $(0,L)$ for all $n = 1, 2, ...$ That means that inner product
 $\left(f(x), \sin\left(\frac{n\pi}{L}x\right)\right) = \int_{x=0}^{L} f(x)\sin\left(\frac{n\pi}{L}x\right) dx = 0$ for all $n = 1, 2, ...$

ii) If
$$f(x) \in L_2(0, L)$$
, then $f(x)$ can be represented by the Generalized Fourier series
 $f(x) = \sum_{k=1}^{L} c_k \phi_k(x)$, where $c_k = (f, \phi_k) = \int_{x=0}^{L} f(x) \phi_k(x) dx$

over any complete set of mutually orthogonal functions $\{\phi_n(x), n = l, 2, ...\}$:

$$(\phi_m, \phi_n) = \int_{x=0}^{L} \phi_m(x) \phi_n(x) dx = 0$$
 if $m \neq n$

iii) Facts: a) $\left\{ \sin\left(\frac{n\pi}{L}x\right), n = l, 2, ... \right\} \in L_2(0, L)$ b) The set $\left\{ \sin\left(\frac{n\pi}{L}x\right), n = l, 2, ... \right\}$ is a complete set of mutually orthogonal functions on (0, L) as a solution of the Sturm-Liouville problem: $y'' + \mu^2 y = 0$, y(0) = 0, y(L) = 0.

iv) Then
$$f(x) \in L_2(0,L)$$
 can be represented as the sine Fourier series $f(x) = \sum_{n=1}^{L} a_n \sin\left(\frac{n\pi}{L}x\right)$,
where $a_n = \int_{x=0}^{L} f(x) \sin\left(\frac{n\pi}{L}x\right) dx = \left(f(x), \sin\left(\frac{n\pi}{L}x\right)\right) = 0$ according to i).

f(x) = 0

Therefore,

General fact: Let $\{\phi_n(x), n = 1, 2, ...\}$ be a complete set of mutually orthogonal functions: $(\phi_m, \phi_n) = \int_{x=0}^{L} \phi_m(x) \phi_n(x) dx = 0$ if $m \neq n$. If $f(x) \notin \{\phi_n(x), n = 1, 2, ...\}$ and $(f, \phi_n) = 0$ for all n = 1, 2, ... then f(x) = 0.

Philippe de Champaigne Portrait of two men

Portrait of René Descartes

Portrait of Blaise Pascal

Philippe de Champaigne

after Frans Hals