ME-505 FALL 2020

FINAL EXAM

1.

NAME:

2.

You can work in teams of two students. However, you should turn in your own test, indicating the name of your teammate.

- 1. Submit in Learning Suite before Midnight on Thursday, December 17.
- 2. Please write neatly and show all your work.
- 3. Any content of the exam cannot be discussed with anyone except of your teammate.
- 4. Computer and standard math software can be used only as the supportive tools.
- 5. Class notes, class web-site, and regular math books can be used.
- 6. No set of rules can cover all possible situations be reasonable do only what you believe is proper.

Seagull Problem

Consider the following initial boundary value problem for the function u(x,t):

$$e^{-2x} \frac{\partial^2 u}{\partial x^2} + \frac{1}{k} S(x,t) = \frac{1}{\alpha} \frac{\partial u}{\partial t}, \quad x_1 < x < x_2, \quad t > 0$$

$$u(x_l,t) = f_l(t)$$
 $t > 0$

$$u(x_2,t) = f_2(t) t > 0$$

$$u(x,0) = u_0(x) x_1 \le x \le x_2$$

1) Analyze the differential operator L with respect to variable x.

Rewrite it in self-adjoint form and find the weight function p(x).

2) Set the supplemental Sturm-Liouville problem.

Find the general solution of the differential equation in the Sturm-Liouville problem

(hint: consider the equations solvable in terms of Bessel functions).

Apply boundary conditions to generate eigenvalues and corresponding eigenfunctions

Write the first five eigenvalues and sketch the first five eigenfunctions for $x_1 = 1.0$, $x_2 = 2.0$.

Define the weighted inner product.

Define the square of the norm of eigenfunctions.

- 3) Use the found eigenfunctions to represent the function $h(x) = I H(x x_0)$ by the Generalized Fourier series in the interval $x_1 \le x \le x_2$. Sketch the graph of h(x) and truncated Fourier series (with 20 terms). Use $x_0 = 5/3$.
- 4) Define the Finite Integral Transform pair based on the found eigenfunctions.
- 5) Derive the operational property of the defined integral transform: apply transform to operator L subject to non-homogeneous boundary conditions.
- 6) Use the defined Finite Integral Transform and the Laplace transform to solve the given i.b.v.p.

Write the formal solution for the transformed function $\overline{u}_n(t)$ using the convolution theorem.

7) Find the solution for the case

$$S(x) = S_0 \delta(x - x_0) \sin(wt), f_1(t) = 0, f_2(t) = 0, u_0(x) = 0$$

$$x_0 = 5/3$$
, $x_1 = 1.0$, $x_2 = 2.0$, $S_0 = 4$, $w = 1.0$, $\alpha = 0.5$, $k = 0.5$

Sketch the solution curves for the given moments of time: t = 5, t = 12.

1) Operator L.

$$Lu \equiv e^{-2x} \frac{\partial^2 u}{\partial x^2}$$

$$Lu \equiv e^{-2x} \frac{\partial^2 u}{\partial x^2} \qquad p(x) = \frac{1}{e^{-2x}} e^{\int 0 dx} = e^{2x}$$

Operator is already in self-adjoint form

$$r(x) = 1$$
, $q(x) = 0$

2) Sturm-Liouville Problem

$$e^{-2x}y'' = \lambda y$$

$$\lambda = -\mu^2$$

$$y(x_i) = 0$$

$$y(x,)=0$$

$$y'' + \mu^2 e^{2x} y = 0$$

This is the equation solution of which can be expressed in terms of Bessel functions.

See equation c) on p.505
$$y'' + (a^2e^{2x} - p^2)y = 0$$

p = 0, $a = \mu$, therefore, the general solution can be written as

$$y(x) = c_1 J_0(\mu e^x) + c_2 Y_0(\mu e^x)$$

Apply boundary conditions:

$$y(x_1) = c_1 J_0(\mu e^{x_1}) + c_2 Y_0(\mu e^{x_1}) = 0$$

$$y(x_2) = c_1 J_0(\mu e^{x_2}) + c_2 Y_0(\mu e^{x_2}) = 0$$

This system of algebraic equations for the constants c_1 and c_2 has non-trivial solution only if the determinant of the matrix of coefficients is equal to zero, i.e.

Eigenvalues

$$J_{\theta}\left(\mu e^{x_{l}}\right)Y_{\theta}\left(\mu e^{x_{2}}\right)-J_{\theta}\left(\mu e^{x_{2}}\right)Y_{\theta}\left(\mu e^{x_{l}}\right)=0$$

That yields the characteristic equation for the eigenvalues μ_n

Therefore, the corresponding eigenfunctions are defined by

$$y_n(x) = c_{1,n}J_0(\mu_n e^x) + c_{2,n}Y_0(\mu_n e^x)$$

They still satisfy the homogeneous boundary conditions, for instance, at $x = x_1$

$$c_{1,n}J_0(\mu_n e^{x_l}) + c_{2,n}Y_0(\mu_n e^{x_l}) = 0$$

From this equation, the relationship between the arbitrary coefficients can be established as

$$c_{1,n} = -c_{2,n} \frac{Y_0\left(\mu_n e^{x_1}\right)}{J_0\left(\mu_n e^{x_1}\right)}, \text{ then } y_n\left(x\right) = -c_{2,n} \frac{Y_0\left(\mu_n e^{x_1}\right)}{J_0\left(\mu_n e^{x_1}\right)} J_0\left(\mu_n e^{x}\right) + c_{2,n} Y_0\left(\mu_n e^{x}\right)$$

If we choose the arbitrary coefficients $c_{2,n}$ as $c_{2,n} = J_0 \left(\mu_n e^{x_1} \right)$, then eigenfunctions can be

Eigenfunctions

$$y_n(x) = J_0(\mu_n e^{x_l}) Y_0(\mu_n e^x) - Y_0(\mu_n e^{x_l}) J_0(\mu_n e^x)$$

Eigenfunctions

 $y_{n}(x) = J_{0}(\mu_{n}e^{x_{1}})Y_{0}(\mu_{n}e^{x}) - Y_{0}(\mu_{n}e^{x_{1}})J_{0}(\mu_{n}e^{x})$ 0.3

0.1

y

0.1

1.2

1.4

1.6

1.8

2

Egenfunctions can look different depending on how the coefficients $c_{1,n}$ and $c_{2,n}$ in the solution $y_n(x) = c_{1,n}J_0\left(\mu_n e^x\right) + c_{2,n}Y_0\left(\mu_n e^x\right)$ are chosen.

But they have obey the property f) of the Sturm-Liouville theorem (p.439)

The square of the norm of eigenfunctions is defined by the weighted inner product:

Norm

$$\|y_n(x)\|_{p=e^{2x}} = (y_n, y_n)_p = \int_{x_1}^{x_2} y_n^2(x)e^{2x}dx$$

3) Representation of

$$h(x) = 1 - H(x - x_0) = \sum_{n=1}^{20} b_n \frac{y_n(x)}{\|y_n(x)\|_p^2}$$
, where $b_n = (h, y_n)_p = \int_{x_1}^{x_2} h(x) y_n(x) e^{2x} dx$

4) Define

Direct Transform

$$\Im\{u(x)\} = \overline{u}_n \qquad = (u, y_n)_p \qquad = \int_{x_1}^{x_2} u(x) y_n(x) p(x) dx \tag{17}$$

Inverse Transform

$$\mathfrak{I}^{-l}\left\{\overline{u}_{n}\right\} = u(x) \qquad = \sum_{n=1}^{\infty} \overline{u}_{n} \frac{y_{n}(x)}{\left\|y_{n}\right\|_{p}^{2}}, \qquad p(x) = e^{2x} \quad (18)$$

5) Operational property D-D (p.860)

$$\Im \left\{ L u \right\} = -\mu_n^2 \, \overline{u}_n \, -y_n'(x_2) r(x_2) f_2(t) + y_n'(x_1) r(x_1) f_1(t)$$

$$= -\mu_n^2 \, \overline{u}_n \, -y_n'(x_2) f_2(t) + y_n'(x_1) f_1(t)$$
(20)

6) Apply the Finite Integral Transform $\Im\{u(x,t)\}=\overline{u}_n(t)$ to the given equation

$$-\mu_n^2 \overline{u}_n - y_n'(x_2) f_2(t) + y_n'(x_1) f_1(t) + \frac{1}{k} S_n(t) = \frac{1}{\alpha} \frac{\partial \overline{u}_n}{\partial t}$$

$$S_n(t) = \int_{x_1}^{x_2} S(x,t) y_n(x) p(x) dx$$

$$u_{n,0} = \int_{x_1}^{x_2} u_0(x) y_n(x) p(x) dx \qquad \text{transformed initial condition}$$

$$-\alpha \mu_n^2 \overline{u}_n - \alpha y_n'(x_2) f_2(t) + \alpha y_n'(x_1) f_1(t) + \frac{\alpha}{k} S_n(t) = \frac{\partial \overline{u}_n}{\partial t}$$

Apply the Laplace transform $U_n(s) = \mathcal{L}\{\overline{u}(t)\}$

$$-\alpha\mu_{n}^{2} U_{n} - \alpha y_{n}'(x_{2}) \mathcal{L}\left\{f_{2}(t)\right\} + \alpha y_{n}'(x_{1}) \mathcal{L}\left\{f_{I}(t)\right\} + \frac{\alpha}{k} \mathcal{L}\left\{S_{n}(t)\right\} = sU_{n} - u_{n,0} \qquad U_{n} = \left\{\overline{u}_{n}\right\} = \int_{0}^{\infty} \overline{u}_{n}(t) e^{-st} dt$$

$$U_{n} = -\alpha y_{n}'(x_{2}) \mathcal{L}\left\{f_{2}(t)\right\} \frac{1}{s + \alpha\mu_{n}^{2}} + \alpha y_{n}'(x_{1}) \mathcal{L}\left\{f_{I}(t)\right\} \frac{1}{s + \alpha\mu_{n}^{2}} + \frac{\alpha}{k} \mathcal{L}\left\{S_{n}(t)\right\} \frac{1}{s + \alpha\mu_{n}^{2}} + u_{n,0} \frac{1}{s + \alpha\mu_{n}^{2}}$$

$$U_{n} = -\alpha y_{n}'(x_{2}) \mathcal{L}\left\{f_{2}(t)\right\} \mathcal{L}\left\{e^{-\alpha\mu_{n}^{2}t}\right\} + \alpha y_{n}'(x_{1}) \mathcal{L}\left\{f_{I}(t)\right\} \mathcal{L}\left\{e^{-\alpha\mu_{n}^{2}t}\right\} + \frac{\alpha}{k} \mathcal{L}\left\{S_{n}(t)\right\} \mathcal{L}\left\{e^{-\alpha\mu_{n}^{2}t}\right\} + u_{n,0} \mathcal{L}\left\{e^{-\alpha\mu_{n}^{2}t}\right\}$$

Apply the inverse Laplace transform (use convolution theorem):

$$\overline{u}_{n}\left(t\right) = -\alpha y_{n}'\left(x_{2}\right) \int_{0}^{t} f_{2}\left(t-\tau\right) e^{-\alpha \mu_{n}^{2}\tau} d\tau + \alpha y_{n}'\left(x_{1}\right) \int_{0}^{t} f_{1}\left(t-\tau\right) e^{-\alpha \mu_{n}^{2}\tau} d\tau + \frac{\alpha}{k} \int_{0}^{t} S_{n}\left(t-\tau\right) e^{-\alpha \mu_{n}^{2}\tau} d\tau + u_{n,0} e^{-\alpha \mu_{n}^{2}t}$$

7) Find the solution for the case

$$S(x,t) = S_0 \delta(x - x_0) \sin(wt), \qquad S_n(t) = \int_{x_1}^{x_2} S_0 \delta(x - x_0) \sin(wt) y_n(x) p(x) dx = S_0 \sin(wt) y_n(x_0) p(x_0)$$

$$u_0(x) = 0, f_1(t) = 0, f_2(t) = 0$$

$$x_0 = 5/3, x_1 = 1.0, x_2 = 2.0, S_0 = 4, w = 1.0, \alpha = 0.5, k = 0.5$$

Solution:

$$u(x,t) = \sum_{n=1}^{\infty} \overline{u}_n(t) \frac{y_n(x)}{\|y_n\|_p^2}, \quad \text{where}$$

$$\overline{u}_n(t) = \frac{\alpha}{k} y_n(x_0) p(x_0) \int_0^t \sin[w(t-\tau)] e^{-\alpha \mu_n^2 \tau} d\tau$$

Convolution integral:
$$\frac{e^{\left(-a\,\mu_{n}^{2}\,t\right)}_{w-w\cos(w\,t)+a\,\mu_{n}^{2}\sin(w\,t)}}{a^{2}\,\mu_{n}^{4}+w^{2}} \ , \ \text{and} \ \ p\left(x_{0}\right)=e^{2x_{0}}$$

Sketch the solution for t = 5, t = 12

Philippe de Champaigne Portrait of two men

Portrait of René Descartes after <u>Frans Hals</u>

Portrait of Blaise Pascal
Philippe de Champaigne