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   “One of the most interesting and successful applications of hydrodynamical theory  

   is to the small oscillations, under gravity, of a liquid having a free surface. “ 

                                                                                               Sir Horace Lamb     Hydrodynamics 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

AQUARIUM 

Physical model:  Consider a finite volume of water in a container with a rectangular cross-section (like an aquarium).  

Our object of study is a plane sheet of water of a uniform depth z0.  We intend to investigate small oscillations of a 

liquid with a free surface under gravity. The mathematical description of this motion is similar to the modeling of 

transverse vibrations of a uniformly stretched membrane by the wave equation, with the parameter 2
0w gz=  and a 

damping coefficient γ .  We casually observe such usual phenomena in everyday life: the bouncing of a water surface in 

a glass or a bottle; water motion in a shaking bucket (why is it so easy to spill it onto the floor?); radially propagating 

waves produced by raindrops on a surface of puddles in the street or water pools in the backyard; or, on a more dramatic 

scale, seiches in lakes or lochs caused by wind forcing or the gravitational influence of the Moon (where, in Loch Ness, 

some monster might appear).   

Yet even in these familiar situations, in many cases it is not obvious to intuitively describe the shape of free surface even 

approximately: are we seeing running waves or standing ones; is it simply a bouncing of a flat plane (as in one example 

in Lamb’s book), or is the surface evolving into a more complicated shape?  

 Let us therefore try to formulate and solve a mathematical initial-boundary problem describing the evolution of the 

shape of the free surface produced by a particular initial deflection from equilibrium. 

Lake Erie Seiches: Once the winds relax, the water sloshes back  
to the end it came from, leading to a back-and-forth movement  
of  water from one side of the lake to the other. 

 

 

 

 



Let the elevation of the surface above the plane bottom be ( ) ( )0x, y,t z u x, y,tη = + , where ( )u x, y,t  represents the 
local deflection of the free surface from the mean depth 0z  (sufficiently deep). 

Use the Integral Transforms technique to solve the following initial-boundary value problem for the  

unknown function     ( )u x, y,t , 0 x L< < , 0 y M< < , t 0>    

 

              governing equation    
2 2 2

2 2 2 2

u u 1 u u2
tx y w t

γ
 ∂ ∂ ∂ ∂

+ = + ∂∂ ∂ ∂ 
  

0 x L
0 y M
< <
< <

  t 0>  (1) 

 
           Boundary conditions 
 

           ( )0
x 0

u hu f y,t
x =

∂ − + = ∂ 
     0 y M< <   t 0>  (2) 

           ( )L
x L

u hu f y,t
x =

∂ + + = ∂ 
    0 y M< <   t 0>  (3) 

 

           ( )0
y 0

u hu g x,t
y =

 ∂
− + = ∂ 

     0 x L< <   t 0>  (4) 

           ( )M
y M

u hu g x,t
y =

 ∂
+ + = ∂ 

   0 x L< <   t 0>  (5) 

           Initial conditions 
 
           ( ) ( )0u x, y,0 u x, y=       0 x L≤ ≤ , 0 y M≤ ≤  (6) 

           ( ) ( )1u x, y,0 u x, y
t
∂

=
∂

     0 x L≤ ≤ , 0 y M≤ ≤  (7) 

            

1) Identify the differential operators in the governing equation and choose the appropriate integral transforms to 

eliminate them. You may use the standard finite Fourier Transform with its already established eigenvalues and 

eigenfunctions (verify that they are applicable for representing functions by a Fourier series), as well as the Laplace 

transform. Apply these transforms to reduce the differential equation to an algebraic equation for the transformed 

unknown function.  Write this intermediate result. 

2) Simplify the transformed equation using the following assumptions: 

( ) ( ) ( ) ( ) ( )0 L 0 M 1f y,t f y,t g y,t g y,t u x, y 0= = = = =  

and solve for the transformed unknown function.  Write it. 

3) Use the inverse integral transforms to obtain the solution of the given initial value problem.  Write it. 

4) Visualize the solution ( ), ,u x y t for . , . , . , . , .L 3 0 M 2 0 h 0 1 w 0 01 0 001γ= = = = = , ( )0 0 0
x yu x, y S , S 0.2

L M
+

= =
+

. 

5) Sketch the plot of ( ), ,u x M 2 t  at the moments of time  t 100, 200, 500, 2000=   using 20 terms in the series. 

6). Exercise your creativity by modifying some aspects of the problem and visualize your new solution. 

7)  Make observations and comments regarding the modelling of tis physical process using this IBVP. 

x L

M

z

y

( )x, y,tη

( )u x, y,t

0z

( )x, y

( ) ( )0x, y,t z u x, y,tη = +
elevation of the surface 
above the bottom

0z is the mean depth

local deflection
from mean depth
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ME EN 505 Final

Benjamin Diehl and Joseph Morrell

Part 1: Intermediate Result

1. Governing equation, domain, boundary/initial conditions

On 0 < x < L, 0 < y < M , t > 0:

ω
2
u

ωx2
+

ω
2
u

ωy2
=

1

w2

(
ω
2
u

ωt2
+ 2ε

ωu

ωt

)
. (1)

Nonhomogeneous Robin boundary conditions:
[
→ωu

ωx
+ hu

]

x=0

= f0(y, t), 0 < y < M, t > 0, (2)

[
+
ωu

ωx
+ hu

]

x=L

= fL(y, t), 0 < y < M, t > 0, (3)

[
→ωu

ωy
+ hu

]

y=0

= g0(x, t), 0 < x < L, t > 0, (4)

[
+
ωu

ωy
+ hu

]

y=M

= gM (x, t), 0 < x < L, t > 0. (5)

Initial conditions:

u(x, y, 0) = u0(x, y), 0 ↑ x ↑ L, 0 ↑ y ↑ M, (6)

ωu

ωt
(x, y, 0) = u1(x, y), 0 ↑ x ↑ L, 0 ↑ y ↑ M. (7)

2. Finite Fourier Transform in x (Robin–Robin table entry)

We use the Robin–Robin eigenproblem in x (FFT table, pg. 759 in textbook):

X
→→
n(x) + µ

2
nXn(x) = 0,

[
→X

→
n(0) + hXn(0)

]
= 0,

[
+X

→
n(L) + hXn(L)

]
= 0. (8)

From the table (specialized to H1 = H2 = h), the eigenvalues µn > 0 satisfy

(h2 → µ
2) sin(µL) + 2hµ cos(µL) = 0. (9)

The associated eigenfunction may be written as

Xn(x) = µn cos(µnx) + h sin(µnx). (10)

The norm (as recorded from the table) is

↓Xn↓2 =
µ
2
n + h

2

2

(
L+

h

µ2
n + h2

)
+

h

2
. (11)

Define the finite Fourier transform (FinFT) in x:

ūn(y, t) = Fx{u} =

∫ L

0
u(x, y, t)Xn(x) dx, u(x, y, t) =

↑∑

n=1

ūn(y, t)
Xn(x)

↓Xn↓2
. (12)
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Operational property (2nd derivative in x)

Using the tabulated operational property (and keeping nonhomogeneous BC forcing):

∫ L

0

ω
2
u

ωx2
(x, y, t)Xn(x) dx = →µ

2
n ūn(y, t) + f0(y, t)Xn(0) + fL(y, t)Xn(L). (13)

Here the boundary terms match the nonhomogeneous Robin data in (2)–(3). This is simplified
from the table because h = k1 = k2 = 1.

Also,

∫ L

0

ω
2
u

ωy2
(x, y, t)Xn(x) dx =

ω
2
ūn

ωy2
(y, t),

∫ L

0

ωu

ωt
(x, y, t)Xn(x) dx =

ωūn

ωt
(y, t), (14)

and similarly for ω2
/ωt

2 and ω/ωt.
Applying Fx to (1) yields a PDE in (y, t):

→µ
2
nūn(y, t) + f0(y, t)Xn(0) + fL(y, t)Xn(L) +

ω
2
ūn

ωy2
(y, t) =

1

w2

(
ω
2
ūn

ωt2
(y, t) + 2ε

ωūn

ωt
(y, t)

)
. (15)

Transforming boundary and initial conditions with a FinFT in x

Define the x-Finite Fourier Transform (FinFT) with Robin–Robin eigenfunctions Xn(x):

ūn(y, t) = Fx{u} =

∫ L

0
u(x, y, t)Xn(x) dx. (16)

Because the transform is taken in x only, any condition that is a function of (x, t) at fixed y (such
as the y-boundary data at y = 0 and y = M) transforms directly by integrating against Xn(x).

Initial conditions. Applying Fx to the initial conditions (6)–(7) gives

ūn(y, 0) =

∫ L

0
u0(x, y)Xn(x) dx ↔ ūn,0(y), (17)

ωūn

ωt
(y, t)

∣∣∣∣
t=0

=

∫ L

0
u1(x, y)Xn(x) dx ↔ ūn,1(y). (18)

y-boundary conditions. For the Robin conditions (4)–(5),

[
→ωu

ωy
+ hu

]

y=0

= g0(x, t),

[
+
ωu

ωy
+ hu

]

y=M

= gM (x, t), (19)

their x-FinFTs are

gn,0(t) ↔ Fx{g0(·, t)} =

∫ L

0
g0(x, t)Xn(x) dx, (20)

gn,M (t) ↔ Fx{gM (·, t)} =

∫ L

0
gM (x, t)Xn(x) dx. (21)
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Equivalently, transforming the left-hand sides of the boundary operators (valid since ω/ωy com-

mutes with
∫ L
0 (·)Xn dx),

∫ L

0

[
→ωu

ωy
(x, 0, t) + hu(x, 0, t)

]
Xn(x) dx = gn,0(t), (22)

∫ L

0

[
+
ωu

ωy
(x,M, t) + hu(x,M, t)

]
Xn(x) dx = gn,M (t). (23)

These transformed functions gn,0(t) and gn,M (t) appear as forcing terms in the y-transformed
operational property for ω2

/ωy
2.

3. Finite Fourier Transform in y (Robin–Robin table entry)

We now apply a FinFT in y using the Robin–Robin eigenproblem on 0 < y < M :

Y
→→
m(y) + ϑ

2
mYm(y) = 0,

[
→Y

→
m(0) + hYm(0)

]
= 0,

[
+Y

→
m(M) + hYm(M)

]
= 0. (24)

Eigenvalues ϑm > 0 satisfy

(h2 → ϑ
2) sin(ϑM) + 2hϑ cos(ϑM) = 0, (25)

with eigenfunction
Ym(y) = ϑm cos(ϑmy) + h sin(ϑmy), (26)

and norm (table form)

↓Ym↓2 = ϑ
2
m + h

2

2

(
M +

h

ϑ2
m + h2

)
+

h

2
. (27)

Define the y-FinFT of ūn(y, t):

ūn,m(t) = Fy{ūn} =

∫ M

0
ūn(y, t)Ym(y) dy, ūn(y, t) =

↑∑

m=1

ūn,m(t)
Ym(y)

↓Ym↓2 . (28)

Operational property (2nd derivative in y)

The table operational property gives, including the nonhomogeneous Robin data in y:
∫ M

0

ω
2
ūn

ωy2
(y, t)Ym(y) dy = →ϑ

2
m ūn,m(t) + gn,0(t)Ym(0) + gn,M (t)Ym(M), (29)

where the transformed boundary data are

gn,0(t) =

∫ L

0
g0(x, t)Xn(x) dx, gn,M (t) =

∫ L

0
gM (x, t)Xn(x) dx. (30)

Similarly define the y-transforms of the x-boundary data:

f0,m(t) =

∫ M

0
f0(y, t)Ym(y) dy, fL,m(t) =

∫ M

0
fL(y, t)Ym(y) dy. (31)

Applying Fy to (15) gives a forced ODE in time for ūn,m(t):

→µ
2
n ūn,m(t) + Xn(0) f0,m(t) +Xn(L) fL,m(t) → ϑ

2
m ūn,m(t) + Ym(0) gn,0(t) + Ym(M) gn,M (t)

=
1

w2

(
d
2
ūn,m

dt2
+ 2ε

dūn,m

dt

)
. (32)

Define
ϖnm = µ

2
n + ϑ

2
m. (33)
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Transforming initial conditions with a FinFT in y

After applying Fx one obtains ūn(y, t). The y-Finite Fourier Transform (FinFT) with Robin–Robin
eigenfunctions Ym(y) is defined by

ūn,m(t) = Fy{ūn} =

∫ M

0
ūn(y, t)Ym(y) dy. (34)

Applying Fy to the x-transformed initial conditions (17)–(18) yields the modal initial data in (n,m):

ūn,m(0) =

∫ M

0
ūn(y, 0)Ym(y) dy =

∫ M

0

[∫ L

0
u0(x, y)Xn(x) dx

]
Ym(y) dy ↔ ūn,m,0, (35)

dūn,m

dt

∣∣∣∣
t=0

=

∫ M

0

ωūn

ωt
(y, t)

∣∣∣∣
t=0

Ym(y) dy =

∫ M

0

[∫ L

0
u1(x, y)Xn(x) dx

]
Ym(y) dy ↔ ūn,m,1. (36)

These coe!cients provide the initial conditions for the Laplace-transformed ODE in t for each mode
(n,m).

4. Laplace transform in t

Let

U(s) = L{ūn,m(t)} =

∫ ↑

0
ūn,m(t)e↓st

dt. (37)

Also use

L
{
dūn,m

dt

}
= sU(s)→ ūn,m(0), L

{
d
2
ūn,m

dt2

}
= s

2
U(s)→ sūn,m(0)→ ˙̄un,m(0). (38)

Denote

ūn,m,0 = ūn,m(0), ūn,m,1 =
dūn,m

dt

∣∣∣∣
t=0

. (39)

Taking the Laplace transform of (32) results in

→µ
2
n U(s) → ϑ

2
m U(s) + Xn(0)F0,m(s) + Xn(L)FL,m(s) + Ym(0)Gn,0(s) + Ym(M)Gn,M (s)

=
1

w2

(
s
2
U(s)→ s ūn,m,0 → ūn,m,1 + 2ε [ sU(s)→ ūn,m,0 ]

)
. (40)

and solving algebraically for U(s) gives

U(s) =
w

2
(
Xn(0)F0,m(s) +Xn(L)FL,m(s) + Ym(0)Gn,0(s) + Ym(M)Gn,M (s)

)
+ ūn,m,0(s+ 2ε) + ūn,m,1

w2ϖnm + s2 + 2εs
,

(41)
where F0,m(s) = L{f0,m(t)}, FL,m(s) = L{fL,m(t)}, and similarly for Gn,0(s) and Gn,M (s). ϖ is
defined in (33).

Equation (40) or (41) are the solution to Part 1.
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Part 2: Homogeneous Robin boundary conditions and zero initial
time-derivative

We now impose homogeneous Robin boundary conditions on all sides:

f0 = fL = g0 = gM = 0 =↗ F0,m = FL,m = Gn,0 = Gn,M = 0. (42)

In addition, we assume a zero initial time-derivative,

u1(x, y) = 0 =↗ ūn,m,1 = 0. (43)

Under these assumptions, the general Laplace-domain expression reduces to

U(s) = ūn,m,0
s+ 2ε

s2 + 2εs+ w2ϖnm
, ϖnm = µ

2
n + ϑ

2
m (44)

where ūn,m,0 is defined in (35).
This is the solution for Part 2.

Part 3: Inverse Integral Transforms

1. Inverse Laplace Transform

Completing the square in the denominator of (44) gives

s
2 + 2εs+ w

2
ϖnm = (s+ ε)2 +

(
w

2
ϖnm → ε

2

. (45)

Define the constant
Anm =


w2ϖnm → ε2 . (46)

Then (44) may be rewritten as

U(s) = ūn,m,0

[
s+ ε

(s+ ε)2 +A2
nm

+
ε

(s+ ε)2 +A2
nm

]
. (47)

Using the standard Laplace transform pairs

L↓1

{
s

s2 +A2

}
= cos(At), L↓1

{
1

s2 +A2

}
=

1

A
sin(At),

together with the shift theorem

L↓1{F (s+ ε)} = e
↓ωt

f(t),

the inverse Laplace transform yields

ūn,m(t) = ūn,m,0 e
↓ωt

[
cos(Anmt) +

ε

Anm
sin(Anmt)

]
. (48)
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2. Inverse Finite Fourier Transforms

The physical solution is recovered by successively inverting the finite Fourier transforms in y and
x. First, invert the transform in y:

ūn(y, t) =
↑∑

m=1

ūn,m(t)
Ym(y)

↓Ym↓2 , (49)

followed by inversion in x:

u(x, y, t) =
↑∑

n=1

ūn(y, t)
Xn(x)

↓Xn↓2
. (50)

Substituting the modal time dependence

ūn,m(t) = ūn,m,0 e
↓ωt

[
cos(Anmt) +

ε

Anm
sin(Anmt)

]
, Anm =


w2(µ2

n + ϑ2
m)→ ε2,

into (49)–(50) yields the final double-series representation

u(x, y, t) =
↑∑

n=1

↑∑

m=1

ūn,m,0 e
↓ωt

[
cos(Anmt) +

ε

Anm
sin(Anmt)

]
Ym(y)

↓Ym↓2
Xn(x)

↓Xn↓2
, (51)

again, where ūn,m,0 is defined by (35).
This is the solution for Part 3.

Part 4: Visualize the Solution

MATLAB was used to visualize the solution in (51) for the following parameters: L = 3.0,M =
2.0, h = 0.1, w = 0.01, ε = 0.001, u0(x, y) = S0

x+y
L+M , S0 = 0.2. 20 terms were used for n and m.

The file Part 4 visualized.gif shows a 3D surface from time t = 0 to t = 2000 with 200 time
steps. Here the axes are allowed independent scaling to show how much the wave changes in the
u-axis.

Part 5: Plot of u(x,M/2, t)

A plot of u(x,M/2, t) for t = 100, 200, 500, 2000 using 20 terms for n and m is shown in Figure 1.
A line for t = 0 was also shown.

Part 6: Creative changes to the Problem & Visualization

We changed the initial condition to be a gaussian centered at x = L/2 and y = M/2, where L was
changed 10, and M stayed at 2.

The initial condition is therefore

u(x, y, 0) = S0 exp→
(x→ L/2)2 + (y →M/2)2

2 ↘ (0.05 ↘ L)2 , (52)

where S0 was increased to 1.5.
The file Part 6 visualized 2.gif shows the surface for these conditions using 20 terms for n and

m from time t = 0 to t = 2000 with 200 time steps. The x, y, and u axes were set to the same scale
to see it better.
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Figure 1: A plot of u(x,M/2, t) for t = 0, 100, 200, 500, 2000 using 20 terms for n and m.

Part 7: Observations and Comments

Comments on Original IBV Problem

For Parts 1-3, it would have become near impossible to solve for u(x, y, t) if simplifications of
f0 = fL = g0 = gM = 0 were not made. Taking a Finite Fourier Transform in x and y was
pretty straight-forward, with the biggest technical challenge being solving for the eigenvalues of the
functions, as it is important to not skip any eigenvalues. If L = M , further simplifications could
be made as µn = ϑm.

Even with simplifications, inverting the Laplace space equation U(s) was di!cult, and took up
a lot of scratch paper to find the right method. From there, the inverse Finite Fourier Transforms
were easy to write.

For Part 4, at x = 0 and y = 0, u = 0, and then increases linearly in x and y to a maximum
value of 0.2 at (x = L, y = M). When time starts, this raised portion of the surface slides down
the sides of the container. The wave propagates, and reflects o” the walls of the square containers,
creating an interesting wavefront, parallel to the container walls in all dimensions.

As time increases, there were times where the entire surface had a negative value for u (remem-
bering u(x, y, t) represents the local deflection of the free surface from the mean depth z0). This
is physically impossible for water, as water is an incompressible fluid. Perhaps further constraints
could be added to ensure conservation of mass.

Surprisingly, 20 terms in each series appears to be su!cient to accurately simulate the IBVP.

7



Comments on Creative IBV Problem

Implementing a gaussian centered around L/2 and M/2 was simple, all it required was changing
the initial conditions as given in (52). We decided to center this gaussian to test our code, as each
quadrant of the container should be symmetric. We found this was the case.

By lengthening the container, we were able to easily see the wave propagate the length of the
container, and reflect o” the end walls. All the while, the wave reflected o” the two longer walls,
and continually made some interesting shapes in the center.

It is probable that the same surface-volume limitation of this model exists in our modified IBVP,
but it was less obvious as the x-y space was bigger, and the wave deflections were more complex.

Conclusion

Overall, this was an exciting problem to solve, and a very fun to play with. We were able to
optimize the code in a way where we could made complex changes and it would only take a few
seconds to run and generate an animation.
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