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IV.1  VECTORS AND TENSORS

IV.1.1. INTRODUCTION
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In mathematics and mechanics, various quantities require different mathematical
representations. Some, like temperature, density, and mass, are described using a
sigle numerical value in appropriate unit. Others, such as velocity, acceleration,
and force, possess both magnitude and direction. There are also more complicated
situations when for some physical quantities we need to describe their
distributions in different directions (for example, shear stress). The common
mathematical objects used for this purpose are scalars, vectors, matrices etc.
However, their application can become challenging when a change of coordinate
system is needed.

For more convenient and universal description that is independent of the
coordinate system, more general mathematical objects are employed.
They are called tensors.

The tensors can be of different order. A zero order tensor which is characterized
by a single real number corresponds to a scalar. A tensor of the first order is
defined by a triple of real numbers and it corresponds to a vector.

A second order tensor defined by nine real numbers corresponds to a matrix. In

general, an n™ order tensor is characterized by 3" components.

The primary purpose of tensor notations is to provide a specific organization of
their components which obey the so called transformation laws of its components
under the change of the coordinate system. Operations with these objects are
studied by tensor analysis.

We will restrict our study mainly to 3-dimensional tensors which are used for
description of the physical quantities in Euclidean space E,.
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IV.1.2. EUCLIDIAN SPACE E3 We assume that Euclidian 3-dimensional space E; consists of geometrical points;

and that in this space we can draw lines and curves, planes and surfaces which
obey the requirements of elementary Euclidian geometry. Also, we assume that
we are able to perform with the help of ruler and compass the construction of
segments and angles, drawing of rays, parallel lines etc., and that we can measure
the distance between points in terms of the defined unit length. Recall the basic
definitions (which are more intuitive than rigorous) of the geometrical objects and
their symbolic visualization and notations:

terminal direction

a >0 angle

initial direction

Point

Line

Plane

Segment

Ray

Direction

Angle

defines the position in space but has “no part”.

is a set of points which can be treated as a translation of a point — an
unbounded straight line. The intersection of two lines yields a point.
A line can be defined by two points in space (there is only one line
which passes through two fixed points).

is a set of points obtained by translation of one line along another
line. The intersection of two planes yields a line. A plane can be
defined by two intersecting lines.

is a line bounded on both sides (a line connecting two points). Any
fixed segment can be chosen as the unit for measurement for the
lengths between points.

is a line bounded on one side. A ray defines a direction.

is defined by a ray.

If two lines lying in the same plane are parallel we say that
they have the same direction.

Each line decomposed into two rays defines two opposite
directions.

is formed by two rays; one ray determines the terminal direction
and the other ray determines the initial direction (measuring of the
angle from initial to terminal direction ccw yields positive angles;
cw — negative angles )

Two lines with a common point define two pairs of angles.
(conjugate?)
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IV.1.3. FREE GEOMETRIC VECTORS IN EUCLIDIAN SPACE E;

terminal point

_—

initial point

norm (magnitude)
\
a \
/ \
\ \
\ \
\ =

\

equality
/
/

a=b

zero vector ©

We define a geometric vector (free vector or just a vector) as a directed segment
in the Euclidian space E,. It can be visualized as a segment with arrows indicating

its direction.

Vectors usually are designated by the lower-case bold letters a,b,u,v,w,X,y,Z,...

or by letters with arrows above 51,5 ...

There is also a special designation for the unit basis vectors 1, j,k or 7, j & .

The arrowed end of a vector indicates the direction and is called a terminal point,
the other end is called an initial point.

Vectors can be placed in any location of Euclidian space. There is no need of
coordinate system for their definition (although the coordinate system may be
helpful for operation with vectors and for other types of vectors which will be
defined later (position vectors)).

The distance between the initial and the terminal points of a vector (the length of
the segment) is said to be the norm (absolute value, magnitude or modulus).

It is denoted in one of the following ways

a = " a " norm of vector a

We say that two vectors are equal if they have the same direction and norm.

It means that geometric vectors are not associated with a particular position in the
space, and they can be moved to any location without loosing their identity (that
is why they are also called free vectors).

Any vector is a representative of a whole family of all vectors with the same norm
and direction. If vector a can be obtained by a parallel translation of another

vector D then it is the same vector. In engineering, comparison of vectors can
be performed only if their norms are measured with the same units.

A zero vector 0 is a vector with a zero norm. The direction of such a vector
looses its sense, because the terminal point coincides with the initial point. Any
point in space is representative of a unique zero vector.
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OPERATIONS WITH GEOMETRIC VECTORS (VECTOR ALGEBRA)

multiplication by a scalar After multiplying the vector a by a positive scalar x# > ¢ the resulting
vector ahas the direction of the vector a and norm & |a].

a After multiplying the vector a by a negative scalar 1 < 0 the resulting vector #a
/ has the direction opposite to the direction of the vector a (the terminal and the
ka initial points are interchanged) and the same norm |ja .
—ka
/ Therefore,  |ka| =|k|[a]| % <R

Vectors which are scalar multiples of each other are called collinear.

Multiplication by 4 = ¢ turns any vector to a zero vector, Ja=0.
A zero vector is collinear to any vector.

The sum of two vectors a and b is the vector @ +D determined by the following

sum
rule: place the initial point of vector b to the terminal point of the vector a ; then
the vector @+ b has the initial point of vector a and the terminal point of vector
b (it is called the triangle rule).

subtraction of vectors Define formally subtraction of two vectors by addition of the negative vector:
a—b=a+(-b)

Abelian group Defined in this way geometric vectors with the operation addition form

an abelian group with the zero vector as a neutral element (it means that they
really are vectors).

Indeed, using elementary geometric construction, it can be
shown that the associative rule is valid

(a+b)+c=a+(b+c)

The neutral element is a zero vector
a+0=0+a

The inverse to a vector a is a vector with the same norm and opposite direction
(-l)a=-a

And finally, the operation addition is commutative

a+b=b+a
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CHEFFE™

“... to devote all my life to the cultivation of my reason, and to progress as much as possible in the knowledge of truth...”
René Descartes

Lange Bisschopstraat, Deventer — one of the
places where Descartes lived in the Netherlands

René Descartes

Ons hart is erg warm, maar die
warmte voelen we niet omdat we

eraan gewend zijn. (1633)

caminovanviijheid nl/devente

“Our heart is full of warmth, yet we no longer feel
it, for we have grown accustomed to it.”

e
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Here lived René Descartes (1596—1650)

Established in the Netherlands,
the French philosopher resided in this house
during his Parisian visits of 1644, 1647 and 1648

“Taking myself as | am, with one foot in one
country and the other in another, | find my
condition very happy, for it is free.”
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IV.1.4. VECTOR SPACES

The closure axioms

ael
o
kaeV

The vector axioms

Vector Space (V ,+,-)

Consider a set of all geometric (free) vectors 1 = {a} uniquely represented by the

position vectors with the operation of addition of vectors @+D and with the
operation of multiplication of a vector by a scalar a.
Let us verify that (1/,+,-) satisfies the axioms of a vector space ( Section 3.1):

)

ii):

1)

2)

3)

4)

5)

6)

7)

8)

For any a,b <7 there is the vector atbel

Forany A€V and 1 R there is the vector ta ey

These axioms are the corollaries of the axiomatic properties of the
geometrical Euclidian space: that any two points of the Euclidian space can
be connected by a segment, and that any segment can be elongated by any
factor or reduced by any factor.

u+v=v+u commutative law

From geometrical construction, it is seen the result of summation is the same
diagonal of the parallelogram. It also yields the other equivalent definition
of the summation rule called the parallelogram rule. This rule is used for
summation of the position vectors.

(u+v)+w=u+(v+w) associative rule

Verification of this axiom also can be performed by geometrical
constructions yielding the same resulting vector.

The neutral element is a zero vector

a+0=0+a

The inverse to a vector a isa vector —/-a=-2
(the vector with the same norm and the opposite direction).

The simple geometrical considerations yield the remaining properties:
IfueV and a,b R, then a(bu)=(ab)u associative law

If u,ver and xeR,then k(u+v)=ku+kv distributive law
Ifuel and a,b €R , then (a+b)u=au+bu distributive law

IfUeV | then (Hu=u

The properties 5,7, and 8 are the properties of collinear vectors (vectors lying on
the same line are called collinear).
Therefore, we verified that

The set of all geometric vectors ¥~ with operations of addition of vectors

and multiplication of vectors by a scalar, form a vector space (V,+,~)
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Linear independence

VECTORS ON THE LINE

The general facts and properties of vector spaces (considered in Chapter III) can
be applied to the vector space of geometrical vectors. Now we want to find a way
for representation of geometrical vectors, namely we need to determine the
dimension of the vector space and construct the basis of the vector space.

Recall some definitions concerning the vector spaces from Section III.2 and
formulate them in terms of geometric vectors.

Linear combination is a finite sum of the form

n
aa, +a,a,+..+a,a, =>aa, <R, a¢eV
i=1

The set of vectors a,,a,,...,a, is linearly independent if their linear combination

n

is equal to a zero vector if and only if all coefficients are equal to zero. Therefore,

aa,+o,a,+.+aa, =0 = a=a,=.=a,=0

n

If a finite set of vectors is not linearly independent then it is said to be linearly
dependent. Therefore, it is possible to construct a linear combination of linearly
dependent vectors equal to a zero vector with the coefficients not all equal to
Zero.

If in a set of vectors, one of them can be represented as a linear combination of
other vectors, then they are linearly dependent.

Also, in a set of linearly dependent vectors, one of them can be represented as a
linear combination of other vectors.

If a set of vectors includes a zero vector, then it is linearly dependent.
If two vectors are linearly dependent, they are collinear (lie on the same line).

Any three linearly dependent vectors are coplanar (lie in the same plane).

1-dimensional vector space R (collinear vectors):
If two vectors u and v lie on the same line or on parallel lines, then one of the
vectors can be represented as the scalar multiple of the other

u=av (1)

Conclusion: any two collinear vectors are linearly dependent.
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VECTORS ON THE PLANE

VECTORS IN 3-D SPACE

BASIS

2-dimensional vector space R,

Let u and v be two linearly independent vectors. If vector a is coplanar with
u and v, then it can be uniquely represented as a linear combination
a=ou+fv )
Geometricly, this fact can be easily confirmed. Set all three vectors to the
same initial point. Build a parallelogram with vector a as a diagonal and with
two sides on the lines along vectors wand v. Then scale vectors u and v to
vectors au and BV which coincide with the sides of the parallelogram. Then,
obviously, a=qu+ fv .
To see that this expansion is unique, assume that there exists the other expansion
a=ca'u+pf'v
Subtract this equation from the previous one, then
0=(a-a)u+(B-B")v
Hence vectors u and v are linearly independent, coefficients in this expansion
should be equal to zero, and therefore

a=a ﬂzﬁ'

Conclusion: any three coplaner vectors are linearly dependent.

3-dimensional vector space R,

Let w, v and w be three linearly independent vectors. Then any vector a
be uniquely represented as a linear combination

a=ogu+ fv+yw 3)
Again, as a proof, consider the following geometric construction. Place all four
vectors at the same initial point. Pairs of vectors uv, vw, and wu define three
1es in the space. Through the terminal point of vector a draw three more

1es which are parallel to them. Then intersections of the six planes form a
allelepiped with the vector a as a diagonal. Scale vectors u, v and w to

tors au, fv and YW which coincide with the edges of the parallelepiped.
Then from geometric consideration it is obvious that a = qu+ v+ yw .
Uniqueness of this expansion can be checked similarly to the previous case.

Conclusion: any four vectors are linearly dependent.

Because any vector a in the set of all geometric vectors E; can be represented
by a linear combination of any three linear independent vectors {e ;.€,.e 3}
3
a=>) ae =ae +a.e, +ae 4)
i=1
the span of the set {e ,€,,e 3} generates the Euclidian vector space E | .
A set of any three linear independent vectors {e ;e 2,e3} is a basis of E;.

Therefore, a vector space of geometric vectors £ is 3-dimensional.
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COORDINATE SYSTEM

Orthonormal coordinates

Place the basis vectors {e ,,ez,e3} at the same initial point O called the origin,

and draw lines along the vectors e, called Ox’,0x”,0x’ . Associate each of these
lines with the real axis which directions coincide with the direction of vectors e,

Then they will form an oblique coordinate system, and the coefficients in the
expansion (4) are called the coordinates of vector a . Denote them by

a:ixie, =x'e, +x’e, +x’e, (5)
with the upper inlc;ilces.
If vectors in the basis {u ,u,u 3} are mutually orthogonal (see definition below)
u,-u, =0 fori#j i,j=123

then they form an orthogonal coordinate system. 1If in addition, the orthogonal
basis vectors {i,,i,,i,} are of unit length and

. = .
i =6 = i,j=12,3
=020 1) J

then the basis is called orthonormal (where ¢, is called the Kronecker delta).

The coordinate system formed by the orthogonal (or orthonormal) basis is called
a rectangular coordinate system (or the Carthesian coordinate system). We will
use two notations for the Cartesian coordinate system: 0xyz and 0x,x,x;.

Expansion in the rectangular coordinate system uses coefficients with the lower
indices:

1 0 0
a:ixiil. =xi,+x,0,+x,0, =x,|0|+x,| ] |+x;|0 (6)
- 0 0 1

Right rectangular coordinate system Left rectangular coordinate system

The right rectangular coordinate system is preferred in mathematical modeling
in engineering. The other standard notation for the vector components is

a =xi+yj+zk =xi+yj+zk (6b)

3 . . . .
Therefore, any vector g = > xid, uniquely defines a point in the Euclidean space
i=1

with the coordinates (x,,x,,x;) or (x,y,z). Therefore, alternatively to

coordinates, vectors can be used for specifications of points, and instead of
functions of three variables f'(x,y,z) the vector functions f(r) can be used.
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FREE VECTORS, BOUND VECTORS, POSITION VECTORS

set of vectors
equal to a

a

free vectors

bound vectors

Position vectors

y Pl (xl'y l’zl)
—

“=e._Pxtx,yty,z +z
RSO AR Ea

—
OP +0P,

The equality of the geometrical vectors (firee vectors) was defined through the
equality of their direction and length. According to this definition, any vector a
has infinitely many vectors equal to it obtained by parallel translation of a in
Euclidian space. We will treat them as a class of vectors represented by any one
of them — it means that all of them are just the same vector. It will provide us a
uniqueness of the result of operations with vectors; but we still have the flexibility
with handling the vectors — we can associate it with any convenient location for
analysis. In three dimensions, it is uniquely represented by three numbers.

There are also situations in mechanics when vectors are referred to a specified
point in space, for example, they can be associated with the velocity and the
acceleration of moving particles or with the velocity field of fluid flow, or with
the forces acting on bodies, or gradients and fluxes etc. These vectors are called
the bound vectors. For their definition we also need specification of a position in
space; in 3 dimensions, bound vectors are given by six numbers.

Free vectors are the most general kind of vectors. The handling bound vectors
always can be reduced to operations with free vectors.

There is also a special case of bound vectors — position vectors — which all refer

to a fixed point uniquely defining the zero position vector 0. Therefore, they
need only three numbers for their definition, but the operations with the bound
and position vectors should be modified in such a way that the result is also a
bound or position vector. The comparison of the free vectors and position vectors
is demonstrated in the Table “Vectors in Euclidean Space.” This table also
includes definition of vectors as the 1% order tensors which will be studied in
Section IV.1.7.

Position vectors are the subset of all geometric vectors. Position vectors are all
vectors with the initial point at the same fixed point 0 called the origin and some

terminal point P.a position vector is denoted by 0P. The definition of a
position vector does not require the introduction of a coordinate system, however,
description of position vectors is more convenient if a coordinate system is
introduced.

Operations with position vectors are similar to operations with free vectors with
some modifications:

*  Two position vectors are equal if their terminal points are the same.

* A zero vector is represented only by the origin.

*  Scalar multiplication is equivalent to scalar multiplication of free vectors.
*  The sum of two position vectors is determined by the parallelogram rule.

* The set of all position vectors with the operation vector summation and
operation of scalar multiplication form a vector space.
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Coordinate vectors

Column vectors

Because all position vectors have the same initial point, they are completely
determined only by their terminal point. It means that a different identification of
the terminal point can also form a vector space. If the rectangular coordinate
system Oxyz is set to the origin, then such identification of terminal points can

be performed by it’s coordinates and operations with position vectors can be
expressed in terms of the coordinates of the terminal points. It is not exactly a set
of the position vectors because they are not geometric objects (directed segments)
but rather the ordered triple of real numbers, but they will be completely identical
vector spaces, and allows them to be used interchangeably.

Denote position vectors by the coordinates of the terminal point(x,,x,,x; ).

Two coordinate vectors  a=(a,,a,,a;) and b =(b,,b,,b;) are equal,

a=b if a,=b,a,=b,a,=b,.

Scalar multiplication ka=(ka, ka, ka;), keR

Addition a+b=(a,+b,,a,+b,,a;+b,)
Other notation for coordinate vectors (x,,x,,x;) .

Row vectors a=(a,,a,,a;) is the other name for coordinate vectors.

Column vectors are identical to coordinate vectors, the difference is only on the
way they are written:

a, ka, a,+b,
a=|a, |, ka=|ka, |, a+b=|a,+b,
a, ka, a; +b,

Therefore, free vectors can be defined in the form of coordinate vectors or in the
form of column vectors. It means that if a free vector a is given, then its
coordinates a =(a,,a,,a;) in the Cartesian coordinate system are given.

The definitions and operations with these types of vectors are summarized in the
table. The generalization of the description of vector space induced by the
geometrical Euclidian space is performed with the help of tensors which we will
consider below.
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IV.1.5. DOT PRODUCT

Angle between two vectors

Dot product

Orthogonal vectors

tH
(5]

L7

(®)

Properties of the dot product:

The geometric constructions which are used in trigonometry, analytical geometry
or computer graphics can be formalized in terms of operations with geometric
vectors.

Draw the vectors a and b from the same initial point. Then draw the rays in the
direction of vectors a and D . These rays define two positive angles the sum of
which is equal to the full angle 27 . For characterization of the angle between

two vectors choose those which are between ) and 7. Use the following
notation for the angle between the vectors

#=(ab) =(ba)

The dot product (inner product, scalar product) of vectors a ,beV is defined
asamapa-b.:VxV = R calculated according to

ab=[allbfcos(ab)  =allbleoss 72)

and in the form of the column vectors

a, | | b
a-b= |a, |-|b, | = ab,+a,b, +a;b, (7b)
a; | | bs

We will show that the second definition follows from the first one (Property 6).

The result of the dot product of two vectors is a scalar (real number). It is positive
if the angle @ between vectors a and b is acute (less than 7/2) and negative if
the angle @ is obtuse (greater than 7/2).

We say that vectors a and b are orthogonal and denote it 4 Lb if the angle

between them is the right angle ¢=(a,b)= % . It is obvious that non-zero

vectors a and D are orthogonal if and only if

a-b=0

The condition on the coordinates of vectors to be orthogonal is
a,b, +a,b, +a;b, =0

It can be shown that the dot product satisfies properties of the inner product in a
vector space.

1) The dot product is commutative:

a-b=b-a (commutative law)

2) The dot product of a vector with itself:
a-a=|a||a]cos(a,a) = Ha\f cos(0) = HaH2 =a’ =aj +ai +a;

is a square of the norm (length) of a vector a . Therefore,

2 2 2
a=|a|=ya] +a; +a; =+a-a
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Also 2-a>0 anda-a=0 onlyif a=0

3) Ifvectors a and D are collinear (parallel) with the same direction, then
_~ a-b =[a[[b]cos (a.b) =[] [b]|cos (0) = o] = ab
If vectors a and D are collinear (parallel) with the opposite direction, then
a-b = al|[b] cos (a.b) = [a] [b] cos (=) = —[al ]| = —ab
4) The dot products of the orthonormal basis vectors {i, j k} :

ii=jj=kk=1
i-j=jk=k-i=0

or in more compact form for basis vectors in form of {i,,i,.i,}

=i
Kronecker delta 5, i-i. =5, z{ : ] i,j=12,3 S, =

I
S O ~
S~ D
~ O O

where g, is called the Kronecker delta.

5) Distributive properties:
a-(b+c)=a-b+a-c

(a+b)-c=a-c+b-c

(aa)-(Bb)=apB(a-b) afeR

6) Derivation of the equation (7b) using properties (4) and (5):

al bI
ab: az . b2
a; | | b;

1 0 0 1 0 0

= <a,|0|+a,|1|+a;|0|p-1b,|0|+b,| I |+b;|0

0 0 1 0 0 1

= (aji+a,j+a;k)-(bji+b,j+bk)
= ai-bi+ai-bj+taibk+a,jbi+a,j bj+a,j-bk
+a;k-bji+ak-b,j+ak-bk

= ab, (i-i)+ab, (i-j)+a,b; (i-K)+ab, (j-i)+a,b, (i-j)+a.b;(j-k)
+a;b, (k-i)+a;b, (k- j)+a;b; (k-k)

= a,b, +a,b, +a;b,
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PROJECTIONS Projection of vector a on vector b is a vector computed in the following way
b
a, =||a||cos(a,b)m
b
= IIaIIIIbIIwS(an)W ©)
a-b
=="p
[bff
_ [ﬂ]g
[of] o]
.
"Il

where a, = ﬁ is the length of the projection called the component of a on b

Correspondingly, the projection of vector b on vector a is

b :[ﬂ}i
© Ul )l

with the component b, = ab .
o]

Then the dot product can be written in terms of the components in two forms:
a-b
a,=22 =  ab=ab
[b

p =D
|

a

" a-b=5ba
a

This means that the dot product of two vectors is equal to the product of the norm
of one vector and the component of the other vector on the first one.

Projections on the basis vectors — direction angles

With the help of the dot product, the projections of vector a on the basis vectors
can be determined as:

o =l s = a3, =
1
a-, . . .
a, =H:||a||||12||cos(a,12) =acos(a,i,)=acosf
2
a-i, . . .
o =3l fes(ad) = ae(a) - acosy
‘3"

From these equations, the direction cosines of the angles between vector a and
the coordinate axis can be defined as:

oS =T T o
a a,+a, +a;
a a
e v
cosf = — = ——— (10)
. a 2, 2, 2
i ax+ay+az

cosy = =+ = ————
a ,laj+aj+af
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Vector’s expansion in Cartesian coordinates

Consider how expansion of a vector a € V' in the rectangular coordinate system
given previously by Equation (6) can be written with the help of the dot product:

a:ixiil_ =xi, +x,1, +xi;
i=1
=a;, +a; +a; (sum of projections on axis)
a-i,, a-i,, a-i,,
X :.211"',212 _;13
J (01 A A 8
|
T:'al}%ah o S =||a||cos(a,i,)i, +||a||cos(a,i2)i2 +||a||cos(a,i3)i3
,/'
=ad, +a)i,+ai, (11)
1 0 0
‘;51/ =a.|0|+a,|1l|+a|0
0 0 1

If the coordinates of vector a in the coordinate system Ox,x,x; are known then

the projection of vector a on the direction of the unit vector u can be determined
as (derived from equation (9))

| a, =2 %4 =(a-u)u

3 o

=[(ax]11 +al, +ax313)~u}u
:(axll, ‘u+ta, i, u+ta, i -u)u

:[ax cos(i,,u)+ay cos(iz,u)+a2 cos(is,u):lu (12)
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IV.1.6. CROSS PRODUCT The cross product (outer product, vector product) of vectors a ,bel
¥ is defined as a map aXb:V'xV =V . The result of the cross-product
a*
axb is a vector which is orthogonal to the plane defined by the vectors
::‘Zt-hand a and D drawn from the same point and it is oriented according to the
¢ right-hand rule. The norm of the vector a X b is defined as
a' .
[axb | = [aflp]sin(a.b) (20a)
It is equal to the area of a parallelogram formed by vectors a and b.
Properties: 1) Ifvectors a and b are collinear (parallel), then
axb=0
2) The cross product is anticommutative:
bxa=-axb
3) Distributive properties:
(a+b)xc=axc+bxe
ax(b+c)=axb+axc
(ka)xb=ax(kb)=k(axb), keR
Cross products of basis vectors It follows from the definition and the properties that
T ixi = jxj = kxk =0
/T ixj=k jxi=-k
k=i Kxi o Right Orthonormal
.- I k=1 x)=- Coordinate System @0
ra: kxi=j ixk =—j
Component form of cross product If vectors a and D are given as the column vectors:
a, | 1] [0] [0]
a=|a, |=a,|0|+a,|]|+a;|0|=aji+a,j+ak
a, 0] 10] | 7]
b1 1] TJo] [o]
b=|b, |=b,|0|+b,|1|+b;|0|=bji+b,j+bk
b, | 10] 10] | 7]

Then using the distributive property and Equations (21) one can obtain:
axb =(aji+a,j+ak)x(bi+b,j+bk)

=abjixi+abixj+abixk +a,bjxi+a,b,jxj+a,b;jxk
+a;bkxi+a;bkxj+a;bkxk

=a,b,k—a,b;j —a,bk+a,b;i +a;b,j—a;b,i

axb =(a,b; —azb,)i—(a,b; —a;b, ) j+(a,b, —a,b, )k
i j k
=\|a a a (20b)

b, b, b
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Triple scalar product

Parallel Vectors//

Triple vector product

Lagrange Identity

a, a, da;
a-(bxc) =| b, b, b 21
¢, ¢, ¢

The geometric sense of the triple scalar product is the volume of a
parallelepiped formed by the vectors a,pand ¢ :

Volume = a-(bxc)

z
If the vectors a,pand ¢ are coplanar (lie on the same plane), then:

a-(bxc)=0
a: -
Zé
g

The non-zero vectors a and b are parallel if and only if their cross
product is a zero vector:

allb o axb=0 (22)

ax(bxc)=(a-c)b—(a-b)c (23)

This vector ax(bxc)is perpendicular to vectors a and bxe, and

therefore, it is in the plane formed by vectors b and ¢ :

ad (b 3 c) plane formed
, £ l by b and ¢
is in the S
™~ 4 L
plane formed i \/

by b and ¢

The other form of the triple vector product is given by the similar

equation:
(axb)xc=(a-c)b—(b-c)a 24)

(axb)-(cxd)=(a-c)(b-d)—(a-d)(b-c) (25)
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IV.1.7. EXAMPLES:

»

What is a free vector a defined by the initial point P =(2,4,3) and the
terminal point Q =(2,0,6)?

5
Points P and Q are defined by the position vectors 0P 2(2, 4,3) and

N
00 = (2, 4,3) . Then the vector a can be defined as
0
a=00-0P=(2,0,6)—(2.4,3)=(0,-4,3) = —4j+ 3k =| —4
3

Find the unit vector in the direction of vector a =—4j+ 3Kk .
The norm of vector a is

a=yJa +al+al =\(~4) +3 =\16+9=25=5

Then the unit vector u in the direction of vector a can be defined as

0

wo oA a_divdk 4.3 | 4
la|] « 3 5 575 5
3

5]

Show that if the vectors a =(x,,y,,z,) and b=(x,,y,,z,)# 0 are collinear
then

&Y E

X YV 2
If the vectors are collinear, then they are multiples of each other

a=kb

(x1’y1)z1) = k(xz:)b’zz)

(x,,y,,Z,)Z(ka,kyz,kZZ)

and, therefore,  x, = kx, k=20 x, #0
Xz
v, =ky, k=20 y, #0
Y2
z; =kz, k=2 z,#0
22

From which follows the required identity.

(Work by a constant force)
Determine the work done by a constant force F = (5,4,0) on the object along

the x-axis on the distance §=11 .
The work done by the force is defined by the product of the magnitude of its
projection on the direction of motion and the distance that the body moves:

W =|F|s=(F-i)s=F-(si)

Let s be a vector of magnitude s in a direction i: s—si=1li= (11,0,0).
Then

W=Fs (26)
W =(5,4,0)-(11,0,0) = 55
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For vectors a =(7,-2,3) and b =(-1,3,1), find:

a) the norm of the vectors:

a=la| =P +(-2) +3" =I+4+9=\I4
b=|b|=y(-1) +3*+ 1 =1+9+1=V1I

b) the sum of the vectors:
a+b=(1-1-2+33+1)=(0,1,4)

c) the dot product of the vectors:
a-b=1-(-1)+(-2)-3+3-1=—4
d) the angle between the vectors:

‘b —4
¢=(ab)=cos” 2D =aw1(———}=19=10¢
a1} Ji54

c) the projection of vector a on the direction of vector b

a"”b:_—4(—1,3,1)=(i,—£,—ij
TV [TRNTENT

f) the cross product of vectors:

a, =

i j Kk
axb=|7 -2 3/=(-2-9)i-(1+3)j+(3-2)k =—1li—4j+k
-1 3 1

The center of mass of two points:
R = Mt mor,
m, + m,
The center of mass of n points:
M Mo, Y,

n_n

R

m;, +m,+---m

n

Let P,P,,..., P, be fixed points with masses m,,m,,...,m, respectively.
Let the attraction force of the point P by the point 7, be proportional to

the distance between the points and to the mass of the point /7, :

F, =krm, where k e R is the coefficient of proportionality

Determine the attraction force acting on the point P and determine the

equilibrium position of the point P

Solution:  Let 1, be the position vector with the terminal point /7, .
Then the attraction force acting on the point P by the point B, is
F, = km, (r, —r)
Then the total force acting on the point P
F =F+F +.+F,
=km, (r, —=v)+km, (v, —v)+---+km, (r, —1)

=k(mx, +my,+---+myx,)—k(m,+m,+--+m,)r

MY, + MY, + +m T,
=k(m1+m2+---+mn)|: =2 s —r}

m,+m,+---+m,
:kM(R—l‘), WhereM:m1+m2+...+mn

Point P is the equilibrium point if F=0, therefore, R=r. It means that
the equilibrium point is located at the center of mass of the system of points.
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(Vector’s representation by a linear combination)
u, Vi w,

Let vectors {u=|u L Lv=lv, [Lw=|w, be linearly independent. Then
Us Vs W

any vector a can be represented as a linear combination

a=cu+c,v+c;w

(this representation is equivalent for writing the vector a in the oblique
coordinate system (5)). Let us find the coefficients c,,c,,c; (coordinates of
the vector a in the coordinate system {u,v,w}.

Write a linear combination in the component form:

a; U, Vi W
a, |=c,|u, |[+c,| v, |[+c5|w,
| 93 Uz V3 W

which can be written as a linear system for coefficients c,,c,,c;:

u, vp wp ¢ a,
Uy vy W || 6 | =4,
LUs Vs W3 || G a;

or in the vector form:

Ac=a

Because the set of columns in the matrix A is linearly independent, the
matrix A is invertible, and the linear system has a unique solution (Chapter
x, statements 1,4,5 of the Inverse Matrix Theorem). Therefore, coefficients
¢,;,¢,,c; can be found as

-1

< u, vi w; a;
C|= Uy Vo W, a,
] Uy vy Wy as

or using Cramer’s rule (Chapter x, Theorem x).

For example, find the coordinates of vector a =(-/0,5,—5) in the oblique

coordinate system with the basis vectors

3 2 4
u=|2\\,v=|-1|,w=|1
1 2 3

The determinant of the matrix of coefficients

3 2 4
detA=|2 -1 [l|=-5#0
1 2 3

This means that the column vectors are linearly independent. Then the
linear system has the solution

, 2.6

o] [3 2 41'T-10 5 T 51i-10] [-6

o, |=|2 -1 1| | 5 |=|1 -1 -1 5 |=|-10

| |1 2 3| | -5 ;4TS 7
55

Therefore,
a=—6u-10v+7w
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8. (Representating a vector as linear combination of orthogonal vectors)

V2

u, —(u,-v,)v,

Ys

Gram-Schmidt orthogonalization:

Let vectors {u,v,w} be mutually orthogonal:

uv=u-w=v-u=(
Find the coefficients in the representation of a by a linear combination

a=cu+c,v+c,w
Construct a dot product of the equation with the vectors {u,v,w}
consequently :
a‘u=(cu+c,v+c;w)-u=cu-u+c,v-u+c;w-u=cu-u=c, ||u||2
a-v=_(cu+C,V+C;W) - V=CU-V+C,V-VHCW-V=0C,V V=0, ||v||2
a-w=(cu+c,V+c;W) - W=cC,U-W+C,V-W+C;W-W=C;W-W =c; ||w||2
Then the coefficients can be determined as:

a-u a-v a-w

c[ 2 CZ 2 C3 = 2
Jul v Wl

If in addition, vectors {u,v,w} are normalized, |l =|v||=|w|=7 ,then

27)

c,=a-u, c,=a-v, c;=a-W
For an orthogonal basis, solving the linear system is not necessary — each
coefficient can be determined individually. This is a key advantage of using
an orthogonal basis. In the following example, we will demonstrate how a
linearly independent set can be used to construct an orthonormal basis .

(Gram-Schmidt orthogonalization process)

Let the set of vectors {u,,u,,u;} be linearly independent. Then the set of
orthonormal vectors {v, v, v} canbe constructed with the help of the so

called Gram-Schmidt process which consists of the following steps:

1) Normalize the first vector u, and callit v, :
u
v, =—5

o]

2) Find the component of vector u, orthogonal to vector v, normalize it
and call it v,:
o, —(uz -V,)V,
=2
"u2 —(u, -V,)v,"

3) Projection of the vector u, on the plane defined by the vectors v,,v,

v

can be found as the sum of projections on the directions of v, and v,:
(u; )VIVQ =(u;-v,)v, +(u;-v,)v,
Then the vector u, —(u,) . =u, —(u;-v,)v,—(u,-v,)v, i

orthogonal to the plane v,,v,. Normalize it and call it v,:

u; —(u3 'VI)VI —(u3 'Vz)vz

vV, =

’ ||u3—(u3~V,)v,—(u3-vz)v2"

u,;

vV, = ——

"]

_ llz—(llz'V])V] (28)

vz ||ll2—(ll2'V1)V1||
v o u; v, ) v, —(u;-v,)v,

’ ||ll3—(ll3'V1)V1—(ll3'Vz)V2||
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10. Transformation of Coordinates

\

change of basis *

Xy S
; e,

(i.,i;{ ) = angle between

1

. of
i, and i,

directional cosines:

a, = cos(i,.i})
B, =cos(iyi})

¥, = cos(iy, i} )

Consider two orthogonal coordinte systems Oxyz and Ox'y'z" defined by the
orthonormal basis {i,,i,.i,} and {i},i},i}} having the same point O.
Consider first how one basis can be written in terms of another basis.

Using expansion (11), write vectors {i},i},i’} interms of {ii,,i,}:

=ai, +fi,+7i;
=a,i; + B, + 7,15 (13)

= a5l + fii, + 750

i) =cos(i}.i,)i, +cos(i}.i,)i, +cos(i.i,)i;
i\, =cos(i%.i,)i, +cos(i%.i, )i, +cos(i5.1; )i,
i} =cos(i’.i,)i, +cos(i’.i,)i, +cos(i}.i;)i,
and write vectors {i,,i,,i,} interms of {i,i},i}}:

s e et \er e er \er e et \sr _ o .t .t
i, =cos(i,i))i} +cos(i,i})i} +cos(i,i})i; =i +a,i; +a;i;

= fi; + Bi, + B} (14)

_ o o/ o/
SVIURNE RN

i, =cos(i,.i})i] +cos(i,.i% )i, +cos(i,.i} )i}
i; =cos(i,.i})i) +cos(i,.i} )i} +cos(i,.i})i}

Here we use the following notation for cosines of the angles between i, and i, :

a, =cos(i,iy) =cos(i}.i) =i, i, =i, -i, k=123
yin =cos(i2,i;() =cos(i;,i2) =i, -i; =i, -i, k=123 (15)
k=123

7 =cos(iy i) =cos(i.iy) =iy -0 =i} i

These equations include nine coefficients which are cosines of angles between the
axes of the different basis. We can find the relationships for these coefficients.
Multiply correspondingly each of the equations (13) and (14) by a vector which
is in the left hand side of the equation and use definition of direction cosines (15):

i) i) = ayi, i)+ i, 1)+ 7y i = ai+pi+y; =1
R AV
T R S UR/A T LR Y A R R T
i 0, =ai) i, +oul) -, +ai) i, = at+ai+al=l
i,-i, = Bji-i, + p,i, i, + fii; i, = B +pi+p5; =1
ig‘ig:71i;'i3+7zi'2'i3+73i;'i3 = 712+722+732 :]

This procedure yields six equations for coefficients, but the first three equations
are equivalent to the last three equations. Now form other products with the
vectors from the same basis and use the condition of orthogonality

i1 =ai i)+ B, 15 +yi; 1) = qa,+B,B+17,

ip-iy =ai, i+ i, 1) +yi; 1] = qa;+B,B;+7,7; =0
iS5 = ol i) + Bol, -1 + 755 1) = a,a;+B.6;+7,75 =0
i i, =ai) i, +a,l) i, +a;i} i, = o f +a,p +a;p; =0
i,-i; =) i, +a,i) i, +a,i} i = ay +a,y,vay, =
i, =p0) 0, + i) -0, + 55 -, = 7B +.B+y:B =

Again, only three of these equations for coefficients are independent. Therefore,
the nine coefficients in the basis expansions are connected only by six equations.
Three coefficients remain free — it provides three conditions for the rotation of
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the rectangular coordinates system which can be defined by three parameters
(for example, by three Euler angles).

Coordinates of vector a Consider now, what will happen to the coordinates of some vector a under the
change of the coordinate system from Oxyz to Ox'y'z'. Write the expansion of
vector a in Oxyz (Equation 11):

a=>ai, = [a]|cos (a.i, )i, +|a]cos(a.i, )i, +|a]|cos (a.i; )i,

% =(a-i,)i, +(a-i,)i, +(a-i,)i,

=ai, +a,i,+ai

3
=1

¥

Use equation (12): a, = |:aX cos(i,,u)+ay cos(i_,,u)+ a, cos(i3,u)]u s

then projections of vector a on the vectors {i},i’,i}} are

a, =[aX cos (i, i))+a,cos(i,.i})+a, cos(ij,i',)]i', :(axoﬁ +a,p +a.y, )l;

=27

’

a;, = [ax cos(i,.i%)+a, cos(i,,i})+a, cos(i;,i} ):'1'2 = (axaz +ay,32 +a.y, )i2

a; =[a)r cos (i, i) +a, cos(i,,i})+a. cos(ij,i;)]i; =(CIX0!3 +a,p; +az]/3)i'3

It means that coordinates of vector a in the new coordinate system are:
a,=a.q, +ayﬂ, +ay,
a,=a.0,+ ayﬁz +ay, (16)
a,=a;+ ayﬂj' +a.y;

They provide the direct transformation of the vector’s coordinates under the
change of coordinate system from Oxyz to Ox'y'z".

Similarly, it can be shown that under the change of coordinate system from
Oxyz to Ox'y'z’ the coordinates of vector a are transformed according to
a, =a.0,+a,a,+a,0;
a, :ax'ﬂ] +ay'ﬂ2 +az'ﬂ3 (17)
a,=a,,+a,7,+a,7;

In particular, if we consider the transformation of coordinates of the point
(x,»,z) to (x',y",z") under the change of coordinate system from Oxyz to

Ox'y'z" with the same origin, we have: the direct transformation of coordinates

X' a B y)\(x X'=a,x+p,y+y,z
y' = a, B vy Y=a,x+pf,y+y,z (18)
z' a; By v )\z

Z'=a;x+ L y+y;z
and the inverse transformation

X\ (e, a, a;\(x X=a Xty ez

yi=| B B BV y=px'+By"+ Bz (19)
1 2 3

z

v, 7 Vs 2 Z:71x'+72y,+732'
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11. Alternative matrix representation of transformation of coordinates (transiotional stage to tensor notations)

Consider two orthogonal coordinate systems Oxyz and Ox'y'z" defined
by the orthonormal basis {i,.i,.i,} and {i}.i}i}}.

introduce the new notation

Jfor directional cosines a; Define the cosines of the angles between coordinate vectors i, and i/
of . of e
cos(l_i,ll) =i, =,
o e et e _
COS(II,IZ) =i’-i, =a, a,
o Y . _
cos(l_i,lj,) =i i; =a;
i Directional cosines can be written in a matix form
e s e s
a; Qg L, L 1
_ | oer . or e of .
o & = Ay Oy Q| =101, 1,1, 1z,
i o . e . o .
1
O; Q3 O -1 101 1300
P
i o i1,
J
a
. o . of . o/
a; Gy Ly L0y 1
_ _ ’ . .r
_ g \—ar g a; = O Gy O i RJAR RS R SRR TR ¥
a; =cos(il,i,)=i;-i, Do) ;
Q3 Ay Oy L1y Lely 100
)
a, i

i) =(i)-i,)i, +(i)1,)i, + (i) -i; )i =l o, +a;l;
15 =(i)-d,)i, + (i -i,)i, + (i) -1y iy =y, T ayl, tasi;
1 = (i 0,0, + (5 0,)i, + (i 15 )i = ayd; Fagl, +agi;
i a,; a, oa;|i
i) =l oy ay |, i =ai,
i} a; Qo )\

Representation of coordinate vectors i, in coordinate system Ox'y'z’

- . of st . of \ st . of Y1 _ s/ s/ 2!

1, = (1/ '1/)11 +(l/ '12)12 +(1/ '13)13 =a;1;+ o0, a1

- . or \sr . of \sr . of \ o1 — ! 3! 3!

1, = (12 '11)1/ +(12 '12)12 +(12 '13)13 = a1 F 0yl T 0l

- . of \ ot . of \ st . of \sr — s st 3!
1; = (13 i) + (i '12)12 +(13 '13)13 =31+ Ayl + sl

. o/

I a; Gy O ||

. . . 9
1 =Gy Gy Cyp |1 L =a;l;

1 O3 Gy Qs )\1;
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: : o . . . . . .
Representation of vector a in Ox'y'z a  =(a-i))i)+(a-i})i} +(a-i})i}

Y rer rer
=X, +x212 +x313

Use transformation of basis vectors x;=a-i = a-[(i; -i,)il +(i} -iz)iz +(i', -ig)iJ
=[(i-1))a-i, +(i) i, )a-i, + (i) -1 )a-i, |

=0 X 0 X, T A

=0 X T 0, X, T QX
r_ o —a.l(3 3 ): + TECRY n T
xp=a-i} =a-| (i} -0))i, +(i5 -1, )i, + (i} -i;)

=[(i5-1, )a-i, +(if -1, )a-i, + (i) -1, )a-i, |

=05 X T 03X, + AgpX;

!
X; o G O X
r_ =
X =ax Y=oy, a, ay |l x, (18b)
!
X3 O3 Qs O3 )\ X
Representation of vector a in Oxyz a =(a-i))i,+(a-i,)i,+(a-i,)i,

=X, + X0, + X0

Use transformation of basis vectors x, =a-i, = a-[(ij )i+ (i 15 )i + (1 - )1’3]

=0, X) + 0y X) + )X,
X, =a-i, =a-[ (i) )ij + (i 15 )i + (i -1 )i} |
=[(i; -1 )a-i) +(iy -1 )i + (i, -1 a-d) |

_ ’ ’ ’
=Qp3X) T 03X, + Ay

X, o Oy O [ X
—_ ! —_ ’
T = WS X | T O Oy Oy || X (19b)
!
X3 O3 Oh; O )\ X3

The coordinates of a vector are transformed in the same way as the basis vectors.
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Vectors in Euclidian Space

et . &t
free vector position vector coordinate vector 17 order tensor
'-* triple af real munbers a
I I o
a ! o a, wiith index
,.T-,' & i J'-t_.- L COnveniion: =123
H ' d = "\:\ITIIJ,IJ-‘.\'J..E.-" or a= a2 and
direcied A Hl a SRR
RS y ; 3 ;
segment O LT . N COMPERTiGR
/ ab =ab, +ab, +a,b,
x b8, =a, +a, +a,
Zerp vector T
.
(L)
a R ——— 0 = <0.00> o

any IHA'?"I'I

norms
. ¥ =] —_ & & i & - F] r) F 5 o
all = lengrhof segment HG'F -ix, +¥y +Z; ||ﬂ|| 15.. +aj +a; 1}‘ X
equality a = b
X =X a =h
! 2 i I
/ i Vectars are 'T = T' L T a=b <= a,= -"‘2 a =b
equal if they . .
b lve the same =4 a, ."-.{
ncrm aned
direction
7 7 rerllaleroramm rule
summation triangle rule parallelogram rule

a+b =<a+barhaths a+b
multiplication by a scalar
)
ka =<ka ka ka > ka,
.
lleall = fellall
dot product
a
b OF 0P, = x,X,+),¥,+2,Z, a'b = ab +a,b, +a,b, ab
a'b = ||a|":||cas|a,bj
cross product
Ea;b,
axh ik
. OF xOF =[x, ¥y, £, axh laxbj -ab, -ab
b X. ¥, Z
= Ve 2 = {a)b, -ab, a,b -ab, ab, —a;..b,}
a ik s cyclic permutation of
123

The relationship (homomorphism) between these vector spaces can be established, making them equivalent in this
sense. As a result, we can flexibly choose the most suitable representation for a given situation. Geometric vectors are
ideal for visualizing physical models, coordinate vectors are more convenient for calculations, and tensors simplify
and streamline the derivation of equations.
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IV.1.8. TENSORS

ijk

Einstein convention

Index notation and the summation convention

e ?z-ff- *-*-’ f-%ﬂ—L) 2&5«

A tensor is an organized multidimensional array of numerical values (numbers)
which are called the components of a tensor.

Each tensor comes equipped with a transformation law that details how the
components of the tensor respond to a change of basis.

Order of a tensor is a number of dimensions needed for its representations
(number of indices needed to label the components).

The following convention is universally accepted in modern mathematical and
physical literature:

1. Any index can appear in lower or upper position:

2. Any index which appears once in the expression can take values 1 , 2 ,3

a, denotes 3 quantities: a,,a,,a,
ab; denotes 9 quantities: ab,,ab,,...,a;b,
Ay denotes 27 quantities: A A4, Agss

3. Any index which appears exactly twice in any terms of an expression

denotes summation with respect to this index from I 03

3
a; =>a, =a;ta, t+ag;

i=1

3
a,b, => a.b, =a,b, +a,b, +a;b,

k=1

S =a,b b b
a;b; =>>a,b, =a;b,, +a,,b, +...+a;;b;;

i=1 j=1

With this convention the summation sign can be dropped and expressions
are simplified. Note that index of summation is a “dummy” variable, that
means that any other index in the same position produces the same result:

Ay =4y =4, + 4+ 45

4. The coordinates of a point are usually denoted:

in the oblique coordinate system by x‘  (upper index)
in the rectangular coordinate system by x; (lower index)

1

5. The change of coordinate system is denoted by a prime.
The coordinates of the same point are denoted
in the rectangular coordinate system Oxyz by x;

in the rectangular coordinate system O'x'y'z' by X!

We will consider tensors in the rectangular coordinate systems.
They are called Cartesian tensors (or affine orthogonal tensors).
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Transformation of coordinates

Kronecker delta

Consider how the equations for transformation of coordinates can be rewritten
using the index convention and produce some additional results.

Directional cosines o, =cos(i.i,) =1 -i 2n
’
i

Directional cosines can be written in a matix form

of e of e or e
QG A Ly L0 1
_ I IO
& Ay Oy Oy =L, Ll 1l
of e or s or e
Q; Oz Qg -1 131 131

o .

@ i -4,
. of . r ’
a; @y - L' 0L
_ _ ' roe et
a; = A Oy A iR VA CEER TRS SN FRe U
. o/ . of r
Qi3 Oy Qg LR ET RS IR F IR ¥

ot

@ i

i =ai (22)

i=ai (23%)

x' =a.x 22)

X =a.x" (23)

Some useful identities for coefficients can be derived with tensor notations:

i = ak[i;z

= i, =i i, = a0 0 i, =a,0, =9, (26)
i, =i
i’j =i,

= i 1; = i, 'ajkik =0, i i, = Q= 5[/ (27)
i; = o,y
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The zero order tensors (scalars) a

Definition of the 0™ order tensor The zero-order tensors are the elements of the field of real numbers IR ,
which are uniquely specified in any coordinate system by a single number
a€R | and are invariant under the change of coordinate system:

Example: The distance between two points is the same in any coordinate system and
is represented by the zero order tensor (scalar).

Indeed, consider two points:

T o Point 4 with coordinates «, in Oxyz and a; in O'xyz'
} e Point B with coordinates b, in Oxyz and b in O'xy'z'
{ Sy
‘ ‘ . Let the coordinates of the origin 0’ in the system Oxyz be x”
‘ 0
1 X . .. . '
e A the coordinates of the origin 0 in the system O'x'y'z’ be x?
“.\ Y'
X Then

r_ o' r_ o' ' r_
a=aa;+x,  b=ab +x = ai_bi_aij(aj_bj)

a=aya;+x,  b=ab+x = a-b=a,(d-b) 29)

gy

By the Pythagorean Theorem:

2 2 ’ ’
(@) :Z}(ai_bif
= iay (aj —bj) ay (a,—b,) use Einstein convention
i=1

=% (aj _b/')(ak _bk)

= 5//( (a/- —bj )(ak —b,c) from (26) a,q, = 5jk
2 . . .
=8, (a,-b)) rewrite using sigma
3 2
- /Z:;(aj _bj)
=d’

Therefore, by taking the square roots, we formally establish this geometrical fact
that

d=d'

i.e. distance between points does not depend on the choice of coordinate system
and it is invariant under linear transformation of coordinates.
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The first-order tensors (vectors) a.

Definition of the 1% order tensor

Consider the vector space R, . Let Oxyz and O'x’y'z’ be two rectangular
coordinate systems in this space. Consider two points

Point 4 with coordinates «, in Oxyz and a] in O'x'y'z'

Point B with coordinates b, in Oxyz and &/ in Oy’

Let the coordinates of the origin 0’ in the system Oxyz be x”

the coordinates of the origin () in the system O'x'y’z' be x?

Then
r_ o' r_ o'
4 =a,a; +X b —aﬂ.bj+x,.

— ! 0 _ ' 0
a4 =a,a; +Xx b, —a,.jbj +X; (30)

The increments of coordinates in two systems are connected through the relation

Ax, =a; —b,
— ’ (o ’ o
= (aifaA. +X; )—(a{./.bj +X; )
_ "
=4a; (a.i b/)
_ '
—a,.ijj

This equation determines the transformation of the difference between the
coordinates of two points under the change of coordinate system from Oxyz to

O'x'y'z’". This transformation is also equivalent to the transformation of the
coordinates of the point under the change of coordinate system from Oxyz to

Ox'y'z" when the origin of the coordinate system is fixed (just rigid rotation):

This consideration is a foundation for the following definition:

The first-order tensor (affine vector or just a vector) is given in any
coordinate system Oxyz by a triple x, which is transformed under the

change of coordinate system to Ox'y'z" according to the law:
X =a,x' (31a)
x =a,x, (31b)

Note that a zero vector is a zero vector in all coordinate systems. The 1% order
tensors are equivalent to coordinate vectors; the comparison of them in the Table
of Vectors in Euclidean Space (p.230) shows only some simplification in the
notations. But the advantage is in the possibility of generalizing them to arbitrary
order tensors.
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Example

Dot product

Norm

Suppose that the function x, (7) determines the position (trajectory) of a particle

of mass m in space with the coordinate system Oxyz . Show that the force acting
on this particle is a vector.

For the time interval from ! to ¢+ A ¢, the displacement of the particle in

coordinate system Ox)z is given by

Ax, = x, (1+A4t)—x, (1)

i

which in the other coordinate system Ox'y'z’ is written as:

Ax. = xl.'(t+At)—x,.'(l)

If we assume that time does not depend on coordinate system, 7 = ¢’ , then
according to (31)

X/ (t+A)=x) (1) =, [ x (t+ At)—x, (1) ]

. . Ax! .
Therefore, displacement Ax; is a vector, and = is also a vector. Moreover,
At

provided that the limit exists,

o Ax!
v = lim —-

is also a vector, which defines instantaneous velocity of the particle at the

moment of time .

By similar arguments, the acceleration a is also a vector with components «, .

Then, according to Newton’s Second Law
F; = ma,
holds in any coordinate system, and the force is a vector

F=ma

i.e. force is defined both by amplitude and direction and cannot become a scalar
by a choice of coordinate system.

In general, vector cannot become a scalar by a choice of coordinate system.

ab = a,b, +a,b, +a;b, = ab, tensor notation

11

a=|a|= = a +a +a; =+a-a = \Ja.a,  tensor notation
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The second-order tensors (matrices) A,

Definition of the 2"? order tensor

Yy

Consider the ordered triple of vectors which in the coordinate system Oxyz are

written as
a;;,4;5,04;3

They are described by the 9 components

Ay = ay  ay  ay (32)

According to (31), under the change of coordinates from Oxyz to Ox'y'z',

vectors a;,,a,,,a,; are transformed to

! —

@i = 0y ay
4 —

iy =y,
4 —

iz = Oy ys

The simultaneous transformation of the components of all three vectors under
the change of coordinate system can be performed in the following way

The quantity defined by nine components 4, € R which are transformed

under the change of coordinate system according to the law
4; =oya,, 4, (33)

is called a second-order tensor.

A second-order tensor can be written as 4, or in the matrix form (32).

A second order tensor defined in one coordinate system can be determined in any
other coordinate system according to transformation (33).

If all components of a tensor are equal to zero, then the tensor is called a zero
tensor. It is obvious that a zero tensor is a zero tensor in all coordinate systems.
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Dyadic A 2" order tensor can be obtained as a listing of all cross products of the

components of two vectors ¢, and b,

ab, ab, ab;
ab, = |a,b, ab, a,b; dyadic (outer product) (34)
a;b, azb, a;b;

The transformation of the vectors is given by

a; = aa,

b,=a,b,

Then transformation of (34) is defined by

ai,bj,' = aikajmakbm

Therefore (34) is a second-order tensor. It is called dyadic and is denoted by

ab,

Vector notation for dyadic is ab. Note that ab #ba.
Example 1 (stress tensor)

Consider a point M in space.

A force acting on some element of area 4s containing point M is

f =pdS

where p is a stress. Vector p can be expanded into

pdS =p,dS, +p,dS, +p,ds;

where vectors p,,p,,Pp; are the components of the stress tensor.
Example 2 (the deformation tensor in the linear theory of elasticity)

1{ Ou; Ou,
Up =2 | -+
2\ ox,  Ox

Example 3 (the rate of the deformation tensor)

1{ ov, ov,
Vi =S| Z T
2\ ox,  Ox,
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IV.1.9. TENSOR ALGEBRA Consider some operations with tensors of different order.
T

Transpose Al-j- =4 e
Addition Let 4, , B, bethe 2" order tensors, then define

Cy =4, + B,

Check if the result is a 2" order tensor:

A[;' = a[kaijkm > BI; = aikaijkm

CI; = aikajm Akm + aikaijkm = aikajm (Akm + Bkm ) = aikajm Ckm

Therefore, the defined sum is a tensor and transforms the same way.
Multiplication by a scalar ca, cx;, cd,
Outer product of tensors Cipm = 4; By, fourth-order tensor (outer product)
Contraction of tensors 4; zero order tensor

A, b, multiplication of a matrix by a vector, the result is a

vector (1% order tensor)
Matrix multiplication Ay By matrix multiplication (2" order tensor)
Dot product ab, inner product, dot or scalar product (0 order tensor)
Note that contraction reduces the order of a tensor.

Symmetry A, =4, symmetric tensor

A, =-4; antisymmetric tensor

Symmetry properties of tensors are not changed under the change coordinates:

a tensor which is symmetric (antisymmetric) in one coordinate system is

symmetric (antisymmetric) in any other coordinate system. General forms

symmetric antisymmetric
a;, 4, a; 0 a;; 4
Ay =|a, ay ay Ay =|-a, 0 ay
;3 Ay A —a;; —ay 0

Any 2" order tensor 7, ;; can be represented as a sum of a symmetric and

antisymmetric tensors. In fact, such an expansion can be written as

T, =S;+4,, where S, = é( T, + Tﬁ) symmetric
4, = é(Tl_j — Tﬂ) antisymmetric
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Kronecker delta g, The Kronecker delta is a symmetric tensor (unit tensor) defined as
= = Sy=i-i,=10 1 0 :{0 =/ (39)
= Z
- 00 1 i
Getulio Alviani
Operations with g,
symmetry 0, =0,
change of index oya;, =a, This expression according to tensor convention yields:
k=1 0,a,=0,a,+06,a,+6;a;=a,
k=2 0,0, =0,,a,+0y,0,+0;,a; = a,
k=3 0;a,=0,;0,+0,0a,+05;a; = a;
change of index 044, =4,
4,5, = 4,8, =4,
tensor inverse 4, A,;.I = é‘ij
contractions 0; =
50y =
é‘imé‘mk 5kj = 5[/'
factoring Ayb, —cb, = A,b, —coub,  =(A, —cS, )b,

Leopold Kronecker Tullio Levi-Civita
(1823-1891) (1873-1941)
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Alternating unit tensor &,

5 1%0"

€= 0-10
10/~

Rules

permutation tensor (6 ’horder)

contractions

contractions

(Levi-Civita tensor) is a special 3" order tensor defined as

£y = (ii xi ) i, consists of 27 entries

if ijk = 123, 231, or 312
Ex=9 0 If any two indices are alike 36)
-1 if ijk = 321, 213, or 132

i = € sign is changed under
interchange of any
En = =
g £/ pair of subscripts
e = —Epi (totally antisymmetric tensor)
Ej =€ =&y repeated interchange of subscripts

Relations between Levi-Civita tensor and Kronecker delta

é‘il im in
EikCimm = o i Om O 6" order tensor
O O O
(37a)
EiwcCitm = 5,'1 O =0 . Oy 4" order tensor (37b)
EikEm = 26, 2" order tensor (37¢)

“6™ order tensor”

Fidalis Buehle
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Cross-product

~y

oy

Exercise

i i, i
axb = a, a, a;
b, b, b

= (a2b3 —a3b2)i, —(a,b3 —a3b,)i2 +(a,b2 —azb,)i3

(axb), =z,a,, (38)
(aXb)1 = gljkajbk + g]jkajbk =&,a,b; +£,,a,b, = a,b; —a;b,
(axb)z =é&,,a,b +&,,ab, =¢&yab,+¢&,,ab; = ab —ab
(axb)3 = gjjkajbk + gjjkajbk = 8312a1b2 + 5321‘12[71 = a,b, —a,b,

Transformation of &, obeys the tensor rule (33).
Transformation of ¢, obeys the tensor rule (44).

Therefore, indeed, they are the 2" oder and the 3™ order tensors.
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Examples of the application of tensors ¢, and &,

to prove vector identities

Prove that the cross product is anticommutative:

Proof:  apply Eqn.(38), and since ¢, = —g,;

a, =&, akbj =

ik _gilg'akbj =_(a><b)i .

Premier Jour d’Emission

Rue Lagrange, Paris

Prove Lagrange’s identity, Eqn.(25):

(axb)-(exd)=(a-c)(b-d)—(a-d)(b-c)

Example 1
bxa=-axb
(bxa), = &b,
First Day Cover =
&)
Example 2
Proof:

(axb)-(exa)

apply Eqn. (38) for tensor representation of cross-product

:(axb)i-(cxd)

i
= gijkajbkgilmcldm
contraction (37a)

= gijkgilmajbkcldm

=(6,0

J1 ™ km

~5,,0,)abed,

=0,%,a,b¢d, —65,,06,abcd,

= (0,46 )(Sud,n )b —(8,,d,, )(Sue, )b, change of index
=c;dya;b,—d cab,

=a,c;bd, —a,d,bc

=(a-c)(b-d)—(a-d)(b-c) n
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Reduction to principal axes Contraction operation
a, = A, b,

results in a vector. It can be treated as a rotation of a vector and changing of its
length (linear transformation).

For a given 2™ order tensor 4, it is important to determine if there are some
vectors which are not rotated after transformation.

This question is formulated in the familiar form of an eigenvalue problem:

Eigenvalue problem Find values of parameter A for which equation

Ay x, = Ax, (39)

has a non-trivial solution X, .

A;’ 3 ) /I
= / They are called: A  eigenvalue
/ .
f X, eigenvector
¥ . / hxi l
i Eigenvectors if they exist determine the principle axes (coordinate system) of the

tensor 4, . The problem is to find this coordinate system and to transform a tensor

to it. Rewrite equation (35) in the form:
(A =28, )x, =0

The necessary condition for this equation to have a non-trivial solution is:
|A,.k —lé‘,.k| =0 characteristic equation (40)

The tensor written in the principle coordinate system has the simplest form.

Formulate the eigenvalue problem in the traditional vector-matrix form.
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Einstein’s manuscripts (from the former Museum of Letters and Manuscripts, Paris)
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IV.1.10. SUMMARY OF TENSORS

The Cartesian tensors are defined in the rectangular coordinate system as the
quantities which under the change of the coordinate system obey the following
laws of transformation of its components:

a'=a Zero-order tensors (scalars) (41)

X =a,x,; First-order tensors (vectors) (42)

4 =a,a,, 4, Second-order tensors (matrices) (43)
4 _ th

A S @ A n'"-order tensors (44)

The Einstein convention on notation and summation is used in these definitions.
The coefficients

e e -
a; =1 lj—COS(ll.,lj)

are the cosines of the angles between the basis vectors of coordinate systems (21).

The tensors with the higher order 7 consist of 3” real numbers.

If the components of a tensor in one coordinate system (xyz are known, then

using equations (41-44), we can determine the components of a tensor in the
rotated coordinate system 0x'y'z" .

Vector space of tensors 7, The set of all tensors of order n together with operations multiplication by a scalar

and addition, form a vector space V,

eV (45)

i iy -1, n

Tensors can also be defined in the generalized curvilinear coordinate systems.
Definitions in the m-dimensional geometrical space yield n” order tensors which
have m" components.
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Orthonormal right coordinate system

i xi,=1; i,xi,=-,
i, xi; =i, 1;xi,=-,
i,xi, =1, i,xi;=-,
i, xi, =i, xi, =i;xi; =0

{iviz’ij'} > ii ER3

Eije = (ii x ij ) i = 0 lf

ijk = 123, 231, or 312
any two indices are alike
ijk = 321, 213, or 132

0,a; = a,

é‘ik Akm = 51(1' A/cm = Aim

Ayl —cb,  =(4, —c6, )b,
4,47 =6
e ]
Sk = "Eik
Eik = "Euy
Eij = —Ei
Ep =i T by
EikEim = 5j15km - 5jm 5kl

change of index

factoring

tensor inverse

contruction

Transformation of coordinates

{i, 1,15} and {i), i)}

0xyz —> Ox'y’z' (rotation)

T
o, =i-i
T
a, =i i
. or s s Y srosr =0
L=a;l; L1y =0l - ol = 0,01 - = Q= 0y
ii=ai i =a,i a,i =, -i=a0,a, =6
i — Yyl i T Gt Gt = GGty e = GG = O
Q0 = Oy
Oty = 5[]‘
Cartesian tensors a' =a zero-order tensors (scalars)
! p—
X =0yx; first-order tensors (vectors)

second-order tensors (matrices)
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(axb)-(exd) = (a-c)(b-d)—(a-d)(b-c)

(axb)x(cxd) = ((axb)-d)e—((axb)-c)d
d

= ((axc)- )b—((bxc)-d)a

= ((cxd)-a)b—((cxd)-b)a
ax(bxc)+bx(ecxa)+ex(axb)=0
(axb)-(cxd)+(bxc)-(axd)+(cxa)-(bxd)=0

(axb)x(cxb) =7

Vector operations a a;

ka ka,

a+h a, +b,

a-b ab,

axb Ea,b,
Properties a-b = b-a

(ka)-b = a-(kb) = k(a-b)

a-(b+c) = ab+a-c

axbhb =-bxa

ax(b+c) = axb+axc

axa =0
Triple Scalar product a-(bxc) gga;b,c
Triple Vector product ax(bxc) EpEuma bic,,
Identities ax(bxc) = (a-¢)b—(a-b)c

(axb)xc = (a-¢)b—(b-c)a

Lagrange identitity
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