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IV.1    VECTORS AND TENSORS 
      
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
IV.1.1.  INTRODUCTION In mathematics and mechanics, various quantities require different mathematical 

representations.  Some, like temperature, density, and mass, are described using a 
sigle numerical value in appropriate unit. Others, such as velocity, acceleration, 
and force, possess both magnitude and direction.  There are also more complicated 
situations when for some physical quantities we need to describe their 
distributions in different directions (for example, shear stress).  The common 
mathematical objects used for this purpose are scalars, vectors, matrices etc.  
However, their application can become challenging when a change of coordinate 
system is needed.  

  
For more convenient and universal description that is independent of the 
coordinate system, more general mathematical objects are employed.   
They are called tensors.   
 
The tensors can be of different order.  A zero order tensor which is characterized 
by a single real number corresponds to a scalar.  A tensor of the first order is 
defined by a triple of real numbers and it corresponds to a vector.   
A second order tensor defined by nine real numbers corresponds to a matrix.  In 
general, an nth order tensor is characterized by n3 components.   
 
The primary purpose of tensor notations is to provide a specific organization of 
their components which obey the so called transformation laws of its components 
under the change of the coordinate system.  Operations with these objects are 
studied by tensor analysis. 

 
 We will restrict our study mainly to 3-dimensional tensors which are used for 

description of the physical quantities in Euclidean space 3E .  
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IV.1.2.  EUCLIDIAN SPACE E3 We assume that Euclidian 3-dimensional space 3E  consists of geometrical points; 

and that in this space we can draw lines and curves, planes and surfaces which 
obey the requirements of elementary Euclidian geometry. Also, we assume that 
we are able to perform with the help of ruler and compass the construction of 
segments and angles, drawing of rays, parallel lines etc., and that we can measure 
the distance between points in terms of the defined unit length. Recall the basic 
definitions (which are more intuitive than rigorous) of the geometrical objects and 
their symbolic visualization and notations: 

 
 
        Point  defines the position in space but has “no part”.  
 
 

Line is a set of points which can be treated as a translation of a point – an 
unbounded straight line.  The intersection of two lines yields a point.  
A line can be defined by two points in space (there is only one line 
which passes through two fixed points). 

                                                                                      

Plane is a set of points obtained by translation of one line along another 
line.  The intersection of two planes yields a line. A plane can be 
defined by two intersecting lines. 

 

 

 
Segment is a line bounded on both sides (a line connecting two points).  Any 

fixed segment can be chosen as the unit for measurement for the 
lengths between points. 

                                    
 
 Ray   is a line bounded on one side.   A ray defines a direction.  
 
                                                                  
 
 Direction     is defined by a ray. 
    
    If two lines lying in the same plane are parallel we say that   

   they have the same direction. 
 
 

    Each line decomposed into two rays defines two opposite    
   directions. 

 
 

Angle is formed by two rays;   one ray determines the terminal direction 
and the other ray determines the initial direction (measuring of the 
angle from initial to terminal direction ccw yields positive angles;  
cw – negative angles )  

 
 
 
 
 
                                                                                                   
    Two lines with a common point define two pairs of angles. 
     (conjugate?) 
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IV.1.3.  FREE GEOMETRIC VECTORS IN EUCLIDIAN SPACE E3 
 

We define a geometric vector (free vector or just a vector) as a directed segment 
in the Euclidian space 3E .  It can be visualized as a segment with arrows indicating 
its direction.   

 
 
 

Vectors usually are designated by the lower-case bold letters , , , , , , , ,...a b u v w x y z  

or by letters with arrows above a,b ,u ,...


    
There is  also a special designation for the unit basis vectors , ,i j k  or ˆˆ ˆi , j ,k . 

The arrowed end of a vector indicates the direction and is called a terminal point, 
the other end is called an initial point.  

 
 

Vectors can be placed in any location of Euclidian space.  There is no need of 
coordinate system for their definition (although the coordinate system may be 
helpful for operation with vectors and for other types of vectors which will be 
defined later (position vectors)). 
 
 
 

 
norm (magnitude)    The distance between the initial and the terminal points of a vector (the length of 
        the segment) is said to be the  norm (absolute value, magnitude or modulus).   
 

It is denoted  in one of the following ways  
 
                   a    = a             norm of vector  a    
 
 
 
 
 
        
equality       We say that two vectors are equal if they have the same direction and norm.  

It means that geometric vectors are not associated with a particular position in the 
space, and they can be moved to any location without loosing their identity (that 
is why they are also called free vectors).    
 
 
Any vector is a representative of a whole family of all vectors with the same norm 
and direction. If vector a  can be obtained by a parallel translation of another 
vector b  then it is the same vector.   In engineering, comparison of vectors can 
be performed only if their norms are measured with the same units. 

 
 
 
 
zero vector A zero vector 0  is a vector with a zero norm.  The direction of such a vector 

looses its sense, because the terminal point coincides with the initial point.  Any 
point in space is representative of a unique zero vector. 
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OPERATIONS WITH GEOMETRIC VECTORS (VECTOR ALGEBRA) 
 
multiplication by a scalar   After multiplying the vector a by a positive scalar k 0>  the resulting    
        vector ka has the direction of the vector a and norm k a .   
 

After multiplying the vector a  by a negative scalar k 0<  the resulting vector ka
has the direction opposite to the direction of the vector a (the terminal and the 
initial points are interchanged) and the same norm a . 

 
        Therefore, k k=a a  k ∈                      
 
        Vectors which are scalar multiples of each other are called collinear.   

        Multiplication by k 0=  turns any vector to a zero vector, 0 =a 0 . 
A zero vector is collinear to any vector. 

 

 
sum The sum of two vectors a  and b  is the vector +a b determined by the following 

rule: place the initial point of vector b to the terminal point of the vector a ;  then 
the vector +a b  has the initial point of vector a  and the  terminal point of vector 
b  (it is called the triangle rule).    

 
 
subtraction of vectors  Define formally subtraction of two vectors by addition of the negative vector: 
 

( )− = + −a b a b   
 
 
 

 
 
 
 
 
 
Abelian group      Defined in this way geometric vectors with the operation addition form    

an abelian group with the zero vector as a neutral element (it means that they 
really are vectors).   
 
Indeed, using elementary geometric construction, it can be   
shown that the associative rule is valid 
 

            ( ) ( )+ + = + +a b c a b c  
 
        The neutral element is a zero vector 
 
            + = +a 0 0 a   
 
        The inverse to a vector a  is a vector with the same norm and opposite direction 
 

( )1− = −a a     
 
        And finally, the operation addition is commutative 
 
            + = +a b b a  

a
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+a b

b
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+a b

b

a
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 “… to devote all my life to the cultivation of my reason, and to progress as much as possible in the knowledge of truth…”   

                 René Descartes 
 
 

  Lange Bisschopstraat, Deventer – one of the    
  places where Descartes lived in the Netherlands 
 
 

 
 
 
 
 
 
 
 
 

  
       
  “Our heart is full of warmth, yet we no longer feel     
   it, for we have grown accustomed to it.” 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
    Here lived René Descartes (1596–1650) 

    Established in the Netherlands, 
the French philosopher resided in this house 
during his Parisian visits of 1644, 1647 and 1648 

“Taking myself as I am, with one foot in one 
country and the other in another, I find my 
condition very happy, for it is free.” 
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IV.1.4. VECTOR SPACES Consider a set of all geometric (free) vectors { }V = a uniquely represented by the 

position vectors with the operation of addition of vectors +a b  and with the 
operation of multiplication of a vector by a scalar ka .   

 Let us verify that ( )V , ,+ ⋅  satisfies the axioms of a vector space ( Section 3.1): 
 
The closure axioms  i)  For any , V∈a b   there is the vector V+ ∈a b  
 
  ii): For any V∈a  and k ∈ there is the vector k V∈a  

These axioms are the corollaries of the axiomatic properties of the 
geometrical Euclidian space: that any two points of the Euclidian space can 
be connected by a segment, and that any segment can be elongated by any 
factor or reduced by any factor. 
 

 The vector axioms    1) + = +u v v u    commutative law  
 

From geometrical construction, it is seen the result of summation is the same 
diagonal of the parallelogram.  It also yields the other equivalent definition 
of the summation rule called the parallelogram rule. This rule is used for 
summation of the position vectors.  

         
        2) ( ) ( )+ + = + +u v w u v w  associative rule  

Verification of this axiom also can be performed by geometrical 
constructions yielding the same resulting vector. 
 
 
 
 
 
 
 

 
3) The neutral element is a zero vector 
 

         + = +a 0 0 a   
         

4) The inverse to a vector a  is a vector 1− ⋅ = −a a   
(the vector with the same norm and the opposite direction). 

         
         The simple geometrical considerations yield the remaining properties: 
 
        5) If V∈u  and a,b∈ , then ( ) ( )a b ab=u u    associative law 
 
        6) If , V∈u v  and k ∈ , then ( )k k k+ = +u v u v   distributive law 
 
        7) If V∈u  and a,b∈ , then ( )a b a b+ = +u u u   distributive law 
 
        8) If V∈u , then ( )1 =u u   
 

The properties 5,7, and 8 are the properties of collinear vectors (vectors lying on 
the same line are called collinear). 

        Therefore, we verified that 
 
Vector Space ( )V , ,+ ⋅   The set of all geometric vectors V with operations of addition of vectors  

and multiplication of vectors by a scalar, form a vector space ( )V , ,+ ⋅  
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The general facts and properties of vector spaces (considered in Chapter III) can 
be applied to the vector space of geometrical vectors.  Now we want to find a way 
for representation of geometrical vectors, namely we need to determine the 
dimension of the vector space and construct the basis of the vector space. 

        Recall some definitions concerning the vector spaces from Section III.2 and  
        formulate them in terms of geometric vectors. 
 
        Linear combination is a finite sum of the form 

          1 1 2 2 n n...α α α+ + +a a a  
n

i i
i 1
α

=

= ∑ a       iα ∈ , i V∈a  

Linear independence  The set of vectors 1 2 n, ,...,a a a  is linearly independent if their linear combination 
is equal to a zero vector if and only if all coefficients are equal to zero.  Therefore, 

          1 1 2 2 n n...α α α+ + + =a a a 0   ⇒    1 2 n... 0α α α= = = =  

 
        If a finite set of vectors is not linearly independent then it is said to be linearly  
        dependent.  Therefore, it is possible to construct a linear combination of linearly 
        dependent vectors equal to a zero vector with the coefficients not all equal to  
        zero.   
 
 

If in a set of vectors, one of them can be represented as a linear combination of 
other vectors, then they are linearly dependent. 
   

        Also, in a set of linearly dependent vectors, one of them can be represented as a  
        linear combination of other vectors. 
 
        If a set of vectors includes a zero vector, then it is linearly dependent.  
 

If two vectors are linearly dependent, they are collinear (lie on the same line). 
 
        Any three linearly dependent vectors are coplanar (lie in the same plane). 
 
 
 
 
VECTORS ON THE LINE    1-dimensional vector space    (collinear vectors): 
 

If two vectors u  and v  lie on the same line or on parallel lines, then one of the 
vectors can be represented as the scalar multiple of the other  

            α=u v                (1) 

        Conclusion:  any two collinear vectors are linearly dependent. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

u α=v u
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VECTORS ON THE PLANE  2-dimensional vector space 2  
 
        Let u  and v  be two linearly independent vectors.  If vector a is coplanar with  
         u  and v , then it can be uniquely represented as a linear combination 
            α β= +a u v                             (2) 
        Geometricly, this fact can be easily confirmed.  Set all three vectors to the   
        same initial point.  Build a parallelogram with vector a as a diagonal and with  
        two sides on the lines along vectors u and v .  Then scale vectors u  and v  to  
        vectors αu  and β v which coincide with the sides of the parallelogram.  Then,  
        obviously, α β= +a u v .    
        To see that this expansion is unique, assume that there exists the other expansion 
            α β′ ′= +a u v   
        Subtract this equation from the previous one, then 
            ( ) ( )α α β β′ ′= − + −0 u v  
        Hence vectors  u  and v are linearly independent, coefficients in this expansion  
        should be equal to zero, and therefore 
            α α′=   β β ′=  
        Conclusion:  any three coplaner vectors are linearly dependent. 
 
 
VECTORS IN 3-D SPACE   3-dimensional vector space 3  
 
        Let u , v  and w  be three linearly independent vectors.  Then any vector a  
can          be uniquely represented as a linear combination 

                                 (3) 

Again, as a proof, consider the following geometric construction.  Place all four  
       vectors at the same initial point. Pairs of vectors uv , vw , and wu define three  
      planes in the space.  Through the terminal point of vector a  draw three more   
      planes which are parallel to them.  Then intersections of the six planes form a   
      parallelepiped with the vector a as a diagonal.  Scale vectors u , v  and w  to   
      vectors αu , β v  and γw which coincide with the edges of the parallelepiped.   

Then from geometric consideration it is obvious that .    
       Uniqueness of this expansion can be checked similarly to the previous case. 

       
        Conclusion:   any four vectors are linearly dependent. 

 

BASIS       Because any vector a in the set of all geometric vectors 3E  can be represented  

        by a linear combination of any three linear independent vectors  

             1 1 2 2 3 3α α α= + +e e e               (4) 

the span of the  set  generates the Euclidian vector space 3E .   

A set of any three linear independent vectors  is a basis of 3E .  
Therefore, a vector space of geometric vectors 3E  is 3-dimensional. 
 
 
 
 
 
 
 

α β γ= + +a u v w

α β γ= + +a u v w

{ }1 2 3, ,e e e
3

i i
i 1
α

=

= ∑a e

{ }1 2 3, ,e e e

{ }1 2 3, ,e e e
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COORDINATE SYSTEM Place the basis vectors  at the same initial point O  called the origin, 

and draw lines along the vectors  called 1 2 3Ox ,Ox ,Ox .   Associate each of these 
lines with the real axis which directions coincide with the direction of vectors ie
Then they will form an oblique coordinate system, and the coefficients in the 
expansion (4) are called the coordinates of vector a .  Denote them by  

            1 2 3
1 2 3x x x= + +e e e                  (5) 

        with the upper indices.  

        If vectors in the basis are mutually orthogonal (see definition below) 

           i j 0⋅ =u u   for i j≠      

        then they form an orthogonal coordinate system.  If in addition, the orthogonal  
        basis vectors { }1 2 3, ,i i i are of unit length and 

           i j ij

1 i j
0 i j

δ
=

⋅ = ≡  ≠
i i    i, j 1,2,3=  

 Orthonormal coordinates   then the basis is called orthonormal  (where ijδ  is called the Kronecker delta). 
The coordinate system formed by the orthogonal (or orthonormal) basis is called 
a rectangular coordinate system (or the Carthesian coordinate system).  We will 
use two notations for the Cartesian coordinate system: 0xyz  and 1 2 30x x x .  

Expansion in the rectangular coordinate system uses coefficients with the lower  
  indices: 

 

           
3

i i
i 1

x
=

= ∑a i 1 1 2 2 3 3 1 2 3

1 0 0
x x x  x 0 x 1 x 0

0 0 1

     
     = + + = + +     
          

i i i         (6) 

             
 
 
 
 
     
 
 
 
        
 
               Right rectangular coordinate system          Left rectangular coordinate system 
 

The right rectangular coordinate system is preferred in mathematical modeling 
in engineering.  The other standard notation for the vector components is 

   a  ˆ ˆ ˆx y z= + +i j k  x y z= + +i j k                   (6b) 

Therefore, any vector 
3

i i
i 1

x
=

= ∑a i  uniquely defines a point in the Euclidean space 

with the coordinates ( )1 2 3x ,x ,x  or ( )x, y,z . Therefore, alternatively to 
coordinates, vectors can be used for specifications of points, and instead of 
functions of three variables ( )f x, y,z  the vector functions ( )f r  can be used. 
 

 

{ }1 2 3, ,e e e

ie

3
i

i
i 1

x
=

= ∑a e

{ }1 2 3, ,u u u

i, j 1,2,3=
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FREE VECTORS, BOUND VECTORS, POSITION VECTORS 
   

The equality of the geometrical vectors (free vectors) was defined through the 
equality of their direction and length.  According to this definition, any vector a
has infinitely many vectors equal to it obtained by parallel translation of a  in 
Euclidian space.  We will treat them as a class of vectors represented by any one 
of them – it means that all of them are just the same vector.  It will provide us a 
uniqueness of the result of operations with vectors; but we still have the flexibility 
with handling the vectors – we can associate it with any convenient location for 
analysis.  In three dimensions, it is uniquely represented by three numbers.  

 

 

There are also situations in mechanics when vectors are referred to a specified 
point in space, for example, they can be associated with the velocity and the 
acceleration of moving particles or with the velocity field of fluid flow, or with 
the forces acting on bodies, or gradients and fluxes etc.  These vectors are called 
the bound vectors.  For their definition we also need specification of a position in 
space; in 3 dimensions, bound vectors are given by six numbers.  

 

Free vectors are the most general kind of vectors.  The handling bound vectors 
always can be reduced to operations with free vectors.  

 

     Position vectors  There is also a special case of bound vectors – position vectors – which all refer 
to a fixed point uniquely defining the zero position vector 0 .  Therefore, they 
need only three numbers for their definition, but the operations with the bound 
and position vectors should be modified in such a way that the result is also a 
bound or position vector. The comparison of the free vectors and position vectors 
is demonstrated in the Table “Vectors in Euclidean Space.”  This table also 
includes definition of vectors as the 1st order tensors which will be studied in 
Section IV.1.7. 

 
 
 Position vectors are the subset of all geometric vectors. Position vectors are all 

vectors with the initial point at the same fixed point 0  called the origin and some 
terminal point P .  A position vector is denoted by 0 P



.  The definition of a 
position vector does not require the introduction of a coordinate system, however, 
description of position vectors is more convenient if a coordinate system is 
introduced.  

 
 
 Operations with position vectors are similar to operations with free vectors with 

some modifications: 

 •   Two position vectors are equal if their terminal points are the same. 

 •   A zero vector is represented only by the origin. 

 •   Scalar multiplication is equivalent to scalar multiplication of free vectors. 

 •   The sum of two position vectors is determined by the parallelogram rule. 
 

• The set of all position vectors with the operation vector summation and 
operation of scalar multiplication form a vector space. 
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Coordinate vectors Because all position vectors have the same initial point, they are completely 

determined only by their terminal point.  It means that a different identification of 
the terminal point can also form a vector space.  If the rectangular coordinate 
system Oxyz is set to the origin, then such identification of terminal points can 
be performed by it’s coordinates and operations with position vectors can be 
expressed in terms of the coordinates of the terminal points.  It is not exactly a set 
of the position vectors because they are not geometric objects (directed segments) 
but rather the ordered triple of real numbers, but they will be completely identical 
vector spaces, and allows them to be used interchangeably.  

  
Denote position vectors by the coordinates of the terminal point ( )1 2 3x ,x ,x . 
 

 Two coordinate vectors  ( )1 2 3a ,a ,a=a  and ( )1 2 3b ,b ,b=b  are equal, 
 
       =a b   if   1 1 2 2 3 3a b ,a b ,a b= = = . 
 
 Scalar multiplication  ( )1 2 3k ka ,ka ,ka=a , k ∈  
 
 Addition     ( )1 1 2 2 3 3a b ,a b ,a b+ = + + +a b  
 
 Other notation for coordinate vectors 1 2 3x ,x ,x . 
 Row vectors ( )1 2 3a ,a ,a=a  is the other name for coordinate vectors. 
   
 
Column vectors Column vectors are identical to coordinate vectors, the difference is only on the 

way they are written:  

 
1

2

3

a
a
a

 
 =  
  

a ,  
1

2

3

ka
k ka

ka

 
 =  
  

a ,  
1 1

2 2

3 3

a b
a b
a b

+ 
 + = + 
 + 

a b  

 Therefore, free vectors can be defined in the form of coordinate vectors or in the 
form of column vectors.  It means that if a free vector a  is given, then its 
coordinates ( )1 2 3a ,a ,a=a in the Cartesian coordinate system are given. 

 The definitions and operations with these types of vectors are summarized in the 
table. The generalization of the description of vector space induced by the 
geometrical Euclidian space is performed with the help of tensors which we will 
consider below.  
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IV.1.5.  DOT PRODUCT The geometric constructions which are used in trigonometry, analytical geometry 

or computer graphics can be formalized in terms of operations with geometric 
vectors. 

Angle between two vectors  Draw the vectors a  and b  from the same initial point.  Then draw the rays in the 
direction of vectors a  and b .  These rays define two positive angles the sum of 
which is equal to the full angle 2π .  For characterization of the angle between 
two vectors choose those which are between 0  and π .  Use the following 
notation for the angle between the vectors 

 
         ( ),φ = a b   ( ),= b a  
 
Dot product The dot product (inner product, scalar product) of vectors a , V∈b  is defined 

as a map :V V⋅ × →a b   calculated according to 
 

         ( )cos ,⋅ =a b a b a b  cosφ= a b                     (7a) 

        and in the form of the column vectors 

         
1 1

2 2 1 1 2 2 3 3

3 3

a b
 a b   a b a b a b

a b

   
   ⋅ = ⋅ = + +   
      

a b                      (7b) 

        We will show that the second definition follows from the first one (Property 6). 
   

The result of the dot product of two vectors is a scalar (real number).  It is positive 
if the angle φ  between vectors a and b  is acute (less than 2π ) and negative if 
the angle φ  is obtuse (greater than 2π ).   

 
Orthogonal vectors We say that vectors a  and b  are orthogonal and denote it ⊥a b  if the angle 

between them is the right  angle  ( ),
2
πφ = =a b .  It is obvious that non-zero 

vectors a  and b are orthogonal if and only if  
 

         0⋅ =a b                        
 (8) 

        The condition on the coordinates of vectors to be orthogonal is 

         1 1 2 2 3 3a b a b a b 0+ + =  

It can be shown that the dot product satisfies properties of the inner product in a 
vector space. 

 
Properties of the dot product: 1) The dot product is commutative: 

         ⋅ = ⋅a b b a         (commutative law) 
 
        2) The dot product of a vector with itself: 

         ( ) ( )2 2 2 2 2 2
1 2 3cos , cos 0 a a a a⋅ = = = = = + +a a a a a a a a  

         is a square of the norm (length) of a vector a .  Therefore, 

         2 2 2
1 2 3a a a a   = = + + = ⋅a a a  

 

a

    = ⋅a a a
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         Also 0⋅ ≥a a , and 0⋅ =a a  only if =a 0  
        3) If vectors a  and b are collinear (parallel) with the same direction, then 

         ( ) ( )cos , cos 0 ab⋅ = = = =a b a b a b a b a b  

         If vectors a  and b are collinear (parallel) with the opposite direction, then 

         ( ) ( )cos , cos abπ⋅ = = = − = −a b a b a b a b a b  
 
 

4) The dot products of the orthonormal basis vectors { }, ,i j k  : 
 1⋅ = ⋅ = ⋅ =i i j j k k  
 0⋅ = ⋅ = ⋅ =i j j k k i  
 
 or in more compact form for basis vectors in form of { }1 2 3, ,i i i  
 

Kronecker delta ijδ      i j ij

1 i j
0 i j

δ
=

⋅ = ≡  ≠
i i  i, j 1,2,3=    ij

1 0 0
0 1 0
0 0 1

δ
 
 ≡  
  

 

 
         where ijδ  is called the Kronecker delta. 
 
 
 
        5) Distributive properties: 

         ( )⋅ + = ⋅ + ⋅a b c a b a c  

         ( )+ ⋅ = ⋅ + ⋅a b c a c b c  

         ( ) ( ) ( )α β αβ⋅ = ⋅a b a b  ,α β ∈  

 

        6) Derivation of the equation (7b) using properties (4) and (5): 

⋅a b
1 1

2 2

3 3

a b
 a b   

a b

   
   = ⋅   
      

 

1 2 3 1 2 3

1 0 0 1 0 0
  a 0 a 1 a 0 b 0 b 1 b 0  

0 0 1 0 0 1

              
              = + + ⋅ + +              
                            

 

( ) ( )1 2 3 1 2 3  a a a b b b  = + + ⋅ + +i j k i j k  

1 1 1 2 1 3 2 1 2 2 2 3  a b a b a b a b a b a b= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅i i i j i k j i j j j k  

3 1 3 2 3 3a b a b a b+ ⋅ + ⋅ + ⋅k i k j k k  

( ) ( ) ( ) ( ) ( ) ( )1 1 1 2 1 3 2 1 2 2 2 3  a b a b a b a b a b a b= ⋅ + ⋅ + ⋅ + ⋅ + ⋅ + ⋅i i i j i k j i j j j k
  ( ) ( ) ( )3 1 3 2 3 3a b a b a b+ ⋅ + ⋅ + ⋅k i k j k k  

 1 1 2 2 3 3  a b a b a b= + +   
 
 



Chapter IV   Vector and Tensor Analysis                             IV.1 Vectors and Tensors                                         September 9, 2025        218 
 
PROJECTIONS     Projection of vector a  on vector b  is a vector computed in the following way 

          ba  ( )cos ,=
ba a b
b

 

           ( ) 2cos ,=
ba b a b
b

                   (9) 

           
2

⋅
=

a b b
b

  

 ⋅
=   
 

a b b
b b

 

ba=
b
b

 

        where ba ⋅
=

a b
b

 is the length of the projection called the component of a  on b  

        Correspondingly, the projection of  vector b on vector a  is 

          ab  
 ⋅

=   
 

a b a
a a  

        with the component ab ⋅
=

a b
a

. 

        Then the dot product can be written in terms of the components in two forms: 

          ba ⋅
=

a b
b

 ⇒   ba b⋅ =a b  

          ab ⋅
=

a b
a

 ⇒   ab a⋅ =a b  

This means that the dot product of two vectors is equal to the product of the norm 
of one vector and the component of the other vector on the first one. 

 
Projections on the basis vectors – direction angles  
 

With the help of the dot product, the projections of vector a on the basis vectors 
        can be determined as: 

          ( ) ( )1
x 1 1 1

1

a cos , a cos , a cosα⋅
= = = =

a i a i a i a i
i

  

          ( ) ( )2
y 2 2 2

2

a cos , a cos , a cos β⋅
= = = =

a i a i a i a i
i

 

          ( ) ( )3
z 3 3 3

3

a cos , a cos , a cosγ
⋅

= = = =
a i

a i a i a i
i

 

 
        From these equations, the direction cosines of the angles between vector a  and 
        the coordinate axis can be defined as: 

          x x
2 2 2
x y z

a a
cos     

a a a a
α = =

+ +
 

          
y y

2 2 2
x y z

a a
cos     

a a a a
β = =

+ +
        (10) 

          z z
2 2 2
x y z

a acos     
a a a a

γ = =
+ +

 

0 a cosα


a

i
xa
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Vector’s expansion in Cartesian coordinates     
 

Consider how expansion of a vector V∈a  in the rectangular coordinate system 
given previously by Equation (6) can be written with the help of the dot product: 

            
 
         

3

i i
i 1

x
=

= ∑a i   1 1 2 2 3 3x x x= + +i i i  

             
1 2 3

= + +i i ia a a                            (sum of projections on axis) 
 

             31 2
1 2 32 2 2

1 2 3

⋅⋅ ⋅
= + +

a ia i a ii i i
i i i

 

 
             ( ) ( ) ( )1 1 2 2 3 3cos , cos , cos ,= + +a a i i a a i i a a i i  
  
 
             x 1 y 2 z 3a a a= + +i i i              (11) 
 

             x y z

1 0 0
a 0 a 1 a 0

0 0 1

     
     = + +     
          

 

 
 
              
 
 

If the coordinates of vector  a  in the coordinate system 1 2 3Ox x x are known then 
the projection of vector  a  on the direction of the unit vector u  can be determined 
as (derived from equation (9)) 
 
 

 
 
 

         ua  
2

⋅
=

a u u
u

  ( )= ⋅a u u  

             ( )1 2 3x 1 x 2 x 3a a a = + + ⋅ i i i u u  

 
             ( )1 2 3x 1 x 2 x 3a a a= ⋅ + ⋅ + ⋅i u i u i u u   

 
             ( ) ( ) ( )x 1 y 2 z 3a cos , a cos , a cos , = + + i u i u i u u         (12) 
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IV.1.6.  CROSS PRODUCT The cross product (outer product, vector product) of vectors a , V∈b  

is defined as a map :V V V× × →a b .  The result of the cross-product 
×a b is a vector which is orthogonal to the plane defined by the vectors 

a and b drawn from the same point and it is oriented according to the 
right-hand rule.  The norm of the vector ×a b  is defined as 

 
           ( )    sin ,× =a b a b a b              (20a) 

 
It is equal to the area of a parallelogram formed by vectors a  and b . 

         
Properties:        1) If vectors a and b  are collinear (parallel), then 

           × =a b 0  

          2) The cross product is anticommutative: 

           × = − ×b a a b  

          3) Distributive properties:    

( )+ × = × + ×a b c a c b c     

           ( )× + = × + ×a b c a b a c  

           ( ) ( ) ( )k k k× = × = ×a b a b a b , k ∈         

Cross products of basis vectors   It follows from the definition and the properties that 

                     × = × = × =i i j j k k 0  

           × =i j k   × = −j i k  

           × =j k i   × = −k j i        (21) 

           × =k i j   × = −i k j  

Component form of cross product  If vectors a and b  are given as the column vectors: 

           
1

2 1 2 3 1 2 3

3

a 1 0 0
a a 0 a 1 a 0 a a a
a 0 0 1

       
       = = + + = + +       
             

a i j k  

           
1

2 1 2 3 1 2 3

3

b 1 0 0
b b 0 b 1 b 0 b b b
b 0 0 1

       
       = = + + = + +       
             

b i j k  

          Then using the distributive property and Equations (21) one can obtain: 

          ×a b  ( ) ( )1 2 3 1 2 3a a a b b b= + + × + +i j k i j k  

            1 1 1 2 1 3a b a b a b= × + × + ×i i i j i k 2 1 2 2 2 3a b a b a b+ × + × + ×j i j j j k  
               3 1 3 2 3 3a b a b a b+ × + × + ×k i k j k k  

            1 2 1 3a b a b= −k j 2 1 2 3a b a b− +k i 3 1 3 2a b a b+ −j i  

          ×a b  ( ) ( ) ( )2 3 3 2 1 3 3 1 1 2 2 1a b a b a b a b a b a b= − − − + −i j k  

            1 2 3

1 2 3

  a a a  
b b b

=
i j k

           (20b) 

right-hand 
rule

Right Orthonormal
Coordinate System
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Triple scalar product        ( )⋅ ×a b c
1 2 3

1 2 3

1 2 3

a a a
 b b b  
c c c

=       (21) 

 
The geometric sense of the triple scalar product is the volume of a 
parallelepiped formed by the vectors ,a b and c : 
 
 
 
 
 
 
 

 
 
If the vectors ,a b and c are coplanar (lie on the same plane), then: 

( ) 0⋅ × =a b c  
 
 
 
 
 
 
 
Parallel vectors The non-zero vectors a and b are parallel if and only if their cross 

product is a zero vector: 

             a b    ⇔      × =a b 0        (22) 

 
 
Triple vector product        ( ) ( ) ( )× × = ⋅ − ⋅a b c a c b a b c       (23) 

 
This vector ( )× ×a b c is perpendicular to vectors a  and ×b c , and 
therefore, it is in the plane formed by vectors b  and c : 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The other form of the triple vector product is given by the similar 
equation:  

( ) ( ) ( )× × = ⋅ − ⋅a b c a c b b c a       (24) 

 
Lagrange Identity         ( ) ( ) ( )( ) ( )( )× ⋅ × = ⋅ ⋅ − ⋅ ⋅a b c d a c b d a d b c    (25) 

( )Volume    = ⋅ ×a b c

plane formed 
  by  and b c

( )  
is in the

plane formed 
  by  and 

× ×a b c

b c
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IV.1.7.  EXAMPLES:   1. What is a free vector a defined by the initial point ( )P 2,4,3=  and the  

terminal point ( )Q 2,0,6= ? 

  Points P  and Q  are defined by the position vectors ( )0P 2,4,3
→

=  and  

  ( )0Q 2,4,3
→

= .  Then the vector a can be defined as  

  ( ) ( ) ( )
0

0Q 0P 2,0,6 2,4,3 0, 4,3 4 3 4
3

→ →
 
 = − = − = − = − + = − 
  

a j k  

 
 2. Find the unit vector in the direction of vector 4 3= − +a j k . 
  The norm of vector a  is 

  ( )22 2 2 2
1 2 3a a a a 4 3 16 9 25 5= + + = − + = + = =  

  Then the unit vector u  in the direction of vector a can be defined as 

  

0
4 3 4 3 4

a 5 5 5 5 5
3
5

 
 
 

− +  = = = = = − + = −
 
 
 
  

a a a j ku j k
a

 

 
3. Show that if the vectors ( )1 1 1x , y ,z=a  and ( )2 2 2x , y ,z 0= ≠b  are collinear 

then 
      1 1 1

2 2 2

x y z
x y z

= =  

  If the vectors are collinear, then they are multiples of each other 
      k=a b  
      ( ) ( )1 1 1 2 2 2x , y ,z k x , y ,z=  
      ( ) ( )1 1 1 2 2 2x , y ,z kx ,ky ,kz=  

  and, therefore,  1 2x kx=   1

2

xk
x

=    2x 0≠  

      1 2y ky=   1

2

yk
y

=    2y 0≠  

      1 2z kz=   1

2

zk
z

=    2z 0≠  

  From which follows the required identity.  
 
 
 4. (Work by a constant force) 

Determine the work done by a constant force ( )5,4,0=F  on the object along 

the x-axis on the distance s 11= . 
The work done by the force is defined by the product of the magnitude of its 
projection on the direction of motion and the distance that the body moves: 

( ) ( )W s s s= = ⋅ = ⋅iF F i F i  

         Let s  be a vector of magnitude s in a direction i :   ( )s 11 11,0,0= = =s i i .   
Then 

             W = ⋅F s           (26) 

             ( ) ( )W 5,4,0 11,0,0 55= ⋅ =  

u

a

1=u

a

b
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5. For vectors ( )1, 2,3= −a  and ( )1,3,1= −b , find: 
  a) the norm of the vectors: 

( )22 3a 1 2 3 1 4 9 14= = + − + = + + =a  

   ( )2 2 3b 1 3 1 1 9 1 11= = − + + = + + =b  
  b) the sum of the vectors: 

( ) ( )1 1, 2 3,3 1 0,1,4+ = − − + + =a b  
  c) the dot product of the vectors: 

( ) ( )1 1 2 3 3 1 4⋅ = ⋅ − + − ⋅ + ⋅ = −a b  
  d) the angle between the vectors: 

( ) 1 1 4, cos cos 1.9 109
154

φ − − ⋅ − 
= = = = =       

a ba b
a b



 

  c) the projection of vector a  on the direction of vector b : 

( )2

4 4 12 41,3,1 , ,
11 11 11 11

⋅ −  = = − = − − 
 

b
a ba b
b

 

         f) the cross product of vectors: 

          ×a b ( ) ( ) ( )1 2 3 2 9 1 3 3 2 11 4
1 3 1

= − = − − − + + − = − − +
−

i j k
i j k i j k  

                 

        6. The center of mass of two points: 
            1 1 2 2

1 2

m m
m m

+
=

+
r rR   

         The center of mass of n points: 
            1 1 2 2 n n

1 2 n

m m m
m m m
+ + +

=
+ +

r r r
R





 

Let 1 2 nP ,P ,...,P  be fixed points with masses 1 2 nm ,m ,...,m  respectively.   

Let the attraction force of the point P  by the point jP  be proportional to 
the distance between the points and to the mass of the point jP : 

    j j jF kr m=         where k ∈  is the coefficient of proportionality 

Determine the attraction force acting on the point P  and determine the 
equilibrium position of the point P . 

 
Solution:  Let kr  be the position vector with the terminal point kP .  

Then the attraction force acting on the point P  by the point kP  is 
    ( )k k kkm= −F r r  

Then the total force acting on the point P  
    F  1 2 n= + + +F F F  

             ( ) ( ) ( )1 1 2 2 n nkm km km= − + − + + −r r r r r r
 

             ( ) ( )1 1 2 2 n n 1 2 nk m m m k m m m= + + + − + + +r r r r 
 

             ( ) 1 1 2 2 n n
1 2 n

1 2 n

m m m
k m m m

m m m
 + + +

= + + + − + + + 

r r r
r







 

             ( )kM= −R r , where 1 2 nM m m m= + + +  

Point P  is the equilibrium point if =F 0 , therefore, =R r . It means that 
the equilibrium point is located at the center of mass of the system of points. 
 

R
1r

2r

nr

r
P

1m

2m

kmM

( )kM= −F R r
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        7. (Vector’s representation by a linear combination) 

Let vectors 
1 1 1

2 2 2

3 3 3

u v w
u , v , w
u v w

      
      = = =      
            

u v w be linearly independent.  Then 

any vector a can be represented as a linear combination 

   1 2 3c c c= + +a u v w  

(this representation is equivalent for writing the vector a in the oblique 
coordinate system (5)).  Let us find the coefficients 1 2 3c ,c ,c  (coordinates of 
the vector a in the coordinate system { }, ,u v w . 
Write a linear combination in the component form: 

   
1 1 1 1

2 1 2 2 2 3 2

3 3 3 3

a u v w
a c u c v c w
a u v w

       
       = + +       
              

 

which can be written as a linear system for coefficients 1 2 3c ,c ,c : 

   
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

u v w c a
u  v  w c a
u v w c a

     
     =     
          

 

or in the vector form: 

   =Ac a  

Because the set of columns in the matrix A  is linearly independent, the 
matrix A  is invertible, and the linear system has a unique solution (Chapter 
x, statements 1,4,5 of the Inverse Matrix Theorem).  Therefore, coefficients 

1 2 3c ,c ,c  can be found as 

            

1
1 1 1 1 1

2 2 2 2 2

3 3 3 3 3

c u v w a
c u  v  w a
c u v w a

−
     
     =     
          

 

         or using Cramer’s rule (Chapter x, Theorem x). 

For example, find the coordinates of vector ( )10,5, 5= − −a  in the oblique 
coordinate system with the basis vectors  

            
3 2 4
2 , 1 , 1
1 2 3

      
      = = − =      
            

u v w  

         The determinant of the matrix of coefficients 

            
3 2 4

det 2 1 1 5 0
1 2 3

= − = − ≠A  

This means that the column vectors are linearly independent.  Then the 
linear system has the solution 

           

1
1

2

3

2 61c 3 2 4 10 10 65 5
c 2 1 1 5 1 1 1 5 10
c 1 2 3 5 4 7 5 71

5 5

−
 − − − − −         
          = − = − − = −          
          − −          −
 

 

         Therefore, 
            6 10 7= − − +a u v w  

a

w

v

u 1c u

2c v

3c w
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8. (Representating a vector as linear combination of orthogonal vectors) 

Let vectors { }, ,u v w be mutually orthogonal:   

   0⋅ = ⋅ = ⋅ =u v u w v u  
Find the coefficients in the representation of a  by a linear combination  

    1 2 3c c c= + +a u v w  
Construct a dot product of the equation with the vectors { }, ,u v w  
consequently : 

         ( ) 2
1 2 3 1 2 3 1 1c c c c c c c c⋅ = + + ⋅ = ⋅ + ⋅ + ⋅ = ⋅ =a u u v w u u u v u w u u u u  

         ( ) 2
1 2 3 1 2 3 2 2c c c c c c c c⋅ = + + ⋅ = ⋅ + ⋅ + ⋅ = ⋅ =a v u v w v u v v v w v v v v  

         ( ) 2
1 2 3 1 2 3 3 3c c c c c c c c⋅ = + + ⋅ = ⋅ + ⋅ + ⋅ = ⋅ =a w u v w w u w v w w w w w w  

         Then the coefficients can be determined as: 

            1 2c ⋅
=

a u
u

, 2 2c ⋅
=

a v
v

, 3 2c ⋅
=

a w
w

     (27) 

         If in addition, vectors { }, ,u v w  are normalized, 1= = =u v w  , then 
            1c = ⋅a u , 2c = ⋅a v , 3c = ⋅a w  

For an orthogonal basis, solving the linear system is not necessary – each 
coefficient can be determined individually.  This is a key advantage of using 
an orthogonal basis.  In the following example, we will demonstrate how a 
linearly independent set can be used to construct an orthonormal basis . 

 
        9. (Gram-Schmidt orthogonalization process) 

Let the set of vectors { }1 2 3, ,u u u  be linearly independent.  Then the set of 
orthonormal vectors  { }1 2 3, ,v v v  can be constructed with the help of the so 
called Gram-Schmidt process which consists of the following steps: 
1) Normalize the first vector 1u  and call it 1v : 

   1
1

1

=
uv
u

   

2) Find the component of vector 2u  orthogonal to vector 1v , normalize it 
and call it 2v : 

   ( )
( )

2 2 1 1
2

2 2 1 1

− ⋅
=

− ⋅

u u v v
v

u u v v
 

3) Projection of the vector 3u on the plane defined by the vectors 1 2,v v  
can be found as the sum of projections on the directions of 1v  and 2v : 

   ( ) ( ) ( )
1 2

3 3 1 1 3 2 2= ⋅ + ⋅
v v

u u v v u v v  

 Then the vector ( ) ( ) ( )
1 2

3 3 3 3 1 1 3 2 2− = − ⋅ − ⋅
v v

u u u u v v u v v  is 

orthogonal to the plane 1 2,v v .  Normalize it and call it 3v : 

   
( ) ( )
( ) ( )

3 3 1 1 3 2 2
3

3 3 1 1 3 2 2

− ⋅ − ⋅
=

− ⋅ − ⋅

u u v v u v v
v

u u v v u v v
 

            1
1

1

=
uv
u

 

Gram-Schmidt orthogonalization:     ( )
( )

2 2 1 1
2

2 2 1 1

− ⋅
=

− ⋅

u u v v
v

u u v v
        (28) 

   
( ) ( )
( ) ( )

3 3 1 1 3 2 2
3

3 3 1 1 3 2 2

− ⋅ − ⋅
=

− ⋅ − ⋅

u u v v u v v
v

u u v v u v v
 

1u
1

1
1

=
uv
u

3u

1v

2v

3v

( ) ( )3 1 1 3 2 2⋅ + ⋅u v v u v v

a

w

v

u

2w
⋅a w w

2u
⋅a u u

2v
⋅a v v

1v

2u( )2 2 1 1− ⋅u u v v

2v

( )2 1 1⋅u v v
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10. Transformation of Coordinates Consider two orthogonal coordinte systems Oxyz and Ox y z′ ′ ′  defined by the 
        orthonormal basis { }1 2 3, ,i i i  and { }1 2 3, ,′ ′ ′i i i  having the same point O.    
        Consider first how one basis can be written in terms of another basis. 

        Using expansion (11), write vectors { }1 2 3, ,′ ′ ′i i i  in terms of { }1 2 3, ,i i i : 

        ( ) ( ) ( )1 1 1 1 1 2 2 1 3 3cos , cos , cos ,′ ′ ′ ′= + +i i i i i i i i i i  1 1 1 2 1 3α β γ= + +i i i  
        ( ) ( ) ( )2 2 1 1 2 2 2 2 3 3cos , cos , cos ,′ ′ ′ ′= + +i i i i i i i i i i  2 1 2 2 2 3α β γ= + +i i i         (13) 
        ( ) ( ) ( )3 3 1 1 3 2 2 3 3 3cos , cos , cos ,′ ′ ′ ′= + +i i i i i i i i i i  3 1 3 2 3 3α β γ= + +i i i  

          and write vectors { }1 2 3, ,i i i  in terms of{ }1 2 3, ,′ ′ ′i i i : 

        ( ) ( ) ( )1 1 1 1 1 2 2 1 3 3cos , cos , cos ,′ ′ ′ ′ ′ ′= + +i i i i i i i i i i  1 1 2 2 3 3α α α′ ′ ′= + +i i i  
        ( ) ( ) ( )2 2 1 1 2 2 2 2 3 3cos , cos , cos ,′ ′ ′ ′ ′ ′= + +i i i i i i i i i i  1 1 2 2 3 3β β β′ ′ ′= + +i i i           (14) 
        ( ) ( ) ( )3 3 1 1 3 2 2 3 3 3cos , cos , cos ,′ ′ ′ ′ ′ ′= + +i i i i i i i i i i  1 1 2 2 3 3γ γ γ′ ′ ′= + +i i i  
 

Here we use the following notation for cosines of the angles between i k and  ′i i : 

        ( )k 1 kcos ,α ′= i i  ( )k 1cos ,′= i i  1 k k 1′ ′= ⋅ = ⋅i i i i  k 1,2,3=  

        ( )k 2 kcos ,β ′= i i  ( )k 2cos ,′= i i 2 k k 2′ ′= ⋅ = ⋅i i i i  k 1,2,3=                        (15) 

        ( )k 3 kcos ,γ ′= i i  ( )k 3cos ,′= i i 3 k k 3′ ′= ⋅ = ⋅i i i i  k 1,2,3=  
 

These equations include nine coefficients which are cosines of angles between the 
axes of the different basis.  We can find the relationships for these coefficients.  
Multiply correspondingly each of the equations (13) and (14) by a vector which 
is in the left hand side of the equation and use definition of direction cosines (15):
     

        1 1 1 1 1 1 2 1 1 3 1α β γ′ ′ ′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   2 2 2
1 1 1   α β γ= + +  1=  

        2 2 2 1 2 2 2 2 2 3 2α β γ′ ′ ′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   2 2 2
2 2 2   α β γ= + +  1=  

        3 3 3 1 3 3 2 3 3 3 3α β γ′ ′ ′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   2 2 2
3 3 3   α β γ= + +  1=  

 
        1 1 1 1 1 2 2 1 3 3 1α α α′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   2 2 2

1 2 3   α α α= + + 1=  

        2 2 1 1 2 2 2 2 3 3 2β β β′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   2 2 2
1 2 3   β β β= + + 1=  

        3 3 1 1 3 2 2 3 3 3 3γ γ γ′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   2 2 2
1 2 3   γ γ γ= + +  1=  

 
        This procedure yields six equations for coefficients, but the first three equations  
        are equivalent to the last three equations.  Now form other products with the  
        vectors from the same basis and use the condition of orthogonality 

        1 2 1 1 2 1 2 2 1 3 2α β γ′ ′ ′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   1 2 1 2 1 2   α α β β γ γ= + +  0=  

        1 3 1 1 3 1 2 3 1 3 3α β γ′ ′ ′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   1 3 1 3 1 3   α α β β γ γ= + +  0=  

        2 3 2 1 3 2 2 3 2 3 3α β γ′ ′ ′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   2 3 2 3 2 3   α α β β γ γ= + +  0=  
 
        1 2 1 1 2 2 2 2 3 3 2α α α′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   1 1 2 2 3 3   α β α β α β= + +  0=  

        1 3 1 1 3 2 2 3 3 3 3α α α′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   1 1 2 2 3 3   α γ α γ α γ= + +  0=  

        3 2 1 1 2 2 2 2 3 3 2γ γ γ′ ′ ′⋅ = ⋅ + ⋅ + ⋅i i i i i i i i   1 1 2 2 3 3   γ β γ β γ β= + +  0=  
         

Again, only three of these equations for coefficients are independent.  Therefore, 
 the nine coefficients in the basis expansions are connected only by six equations.  
 Three coefficients remain free – it provides three conditions for the rotation of  

3i

k′i

1i

2i

kα

kβ

kγ

0

( )i k

i k

,  angle between 
                  and  

′ =

′

i i
i i

( )
( )
( )

k 1 k

k 2 k

k 3 k

directional cosines:
  cos ,

  cos ,

  cos ,

α

β

γ

′=

′=

′=

i i

i i

i i

change of basis
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 the rectangular coordinates system which can be defined by three parameters  
 (for example, by three Euler angles). 

Coordinates of vector a   Consider now, what will happen to the coordinates of some vector a  under the  
        change of the coordinate system from Oxyz to Ox y z′ ′ ′ .  Write the expansion of  
        vector a  in Oxyz  (Equation 11): 

        
i

3

x i
i 1

a
=

= ∑a i  ( ) ( ) ( )1 1 2 2 3 3cos , cos , cos ,= + +a a i i a a i i a a i i   

           ( ) ( ) ( )1 1 2 2 3 3= ⋅ + ⋅ + ⋅a i i a i i a i i  
           x 1 y 2 z 3a a a= + +i i i  
 
        Use equation (12):    ua ( ) ( ) ( )x 1 y 2 z 3a cos , a cos , a cos , = + + i u i u i u u ,  
 
        then projections of vector a  on the vectors { }1 2 3, ,′ ′ ′i i i  are 

        
1′i

a ( ) ( ) ( )x 1 1 y 2 1 z 3 1 1a cos , a cos , a cos , ′ ′ ′ ′= + + i i i i i i i ( )x 1 y 1 z 1 1a a aα β γ ′= + + i  

        
2′i

a ( ) ( ) ( )x 1 2 y 2 2 z 3 2 2a cos , a cos , a cos , ′ ′ ′ ′= + + i i i i i i i ( )x 2 y 2 z 2 2a a aα β γ ′= + + i  

        
3′i

a ( ) ( ) ( )x 1 3 y 2 3 z 3 3 3a cos , a cos , a cos , ′ ′ ′ ′= + + i i i i i i i ( )x 3 y 3 z 3 3a a aα β γ ′= + + i  

 
        It means that coordinates of vector a  in the new coordinate system are: 

             xa ′ x 1 y 1 z 1a a aα β γ= + +  

             ya ′ x 2 y 2 z 2a a aα β γ= + +              (16) 

             za ′ x 3 y 3 z 3a a aα β γ= + +  
        They provide the direct transformation of the vector’s coordinates under the  
        change of coordinate system from Oxyz to Ox y z′ ′ ′ .   
 
        Similarly, it can be shown that under the change of coordinate system from   
        Oxyz to Ox y z′ ′ ′  the coordinates of vector a  are transformed according to 

             xa x 1 y 2 z 3a a aα α α′ ′ ′= + +  

             ya x 1 y 2 z 3a a aβ β β′ ′ ′= + +       (17) 

             ya x 1 y 2 z 3a a aγ γ γ′ ′ ′= + +  

        In particular, if we consider the transformation of coordinates of the point   
        ( )x, y,z  to ( )x , y ,z′ ′ ′  under the change of coordinate system from Oxyz to  
        Ox y z′ ′ ′  with the same origin, we have: the direct transformation of coordinates 

             1 1 1x x y zα β γ′ = + +  
             2 2 2y x y zα β γ′ = + +         (18) 
 
             3 3 3z x y zα β γ′ = + +  

        and the inverse transformation 

             1 2 3x x y zα α α′ ′ ′= + +  
             1 2 3y x y zβ β β′ ′ ′= + +        (19) 
             1 2 3z x y zγ γ γ′ ′ ′= + +   
 
 
 
 

1 1 1

2 2 3

3 3 3

x x
y y
z z

α β γ
α β γ
α β γ

′     
    ′ =     

    ′    

1 2 3

1 2 3

1 2 3

x x
y y
z z

α α α
β β β
γ γ γ

′    
    ′=     

     ′    



Chapter IV   Vector and Tensor Analysis                             IV.1 Vectors and Tensors                                         September 9, 2025        228 
 
 11.  Alternative matrix representation of transformation of coordinates (transiotional stage to tensor notations) 
 

Consider two orthogonal coordinate systems Oxyz and Ox y z′ ′ ′  defined 
by the orthonormal basis { }1 2 3, ,i i i  and { }1 2 3, ,′ ′ ′i i i .    

 
          Define the cosines of the angles between coordinate vectors i j and  ′i i  
 
          ( )j 1cos ,′i i  j 1′= ⋅i i  j1α=  

          ( )j 2cos ,′i i  j 2′= ⋅i i  j 2α=              jiα  

                  ( )j 3cos ,′i i  j 3′= ⋅i i  j3α=  
           
          Directional cosines can be written in a matix form 
 

          jiα =   
11 12 13

21 22 23

31 32 33

α α α
α α α
α α α

 
 
 
 
 

1 1 2 1 3 1

1 2 2 2 3 2

1 1 3 2 3 3

′ ′ ′⋅ ⋅ ⋅ 
 ′ ′ ′= ⋅ ⋅ ⋅ 
 ′ ′ ′⋅ ⋅ ⋅ 

i i i i i i
i i i i i i
i i i i i i

 

              jiα        j i′ ⋅i i  
 

ijα =   
11 21 31

12 22 32

13 23 33

α α α
α α α
α α α

 
 
 
 
 

 
1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

′ ′ ′⋅ ⋅ ⋅ 
 ′ ′ ′= ⋅ ⋅ ⋅ 
 ′ ′ ′⋅ ⋅ ⋅ 

i i i i i i
i i i i i i
i i i i i i

 

              ijα        j i′⋅i i  

            
Representation of coordinate vectors i′i  in coordinate system Oxyz  
 

1′i  ( ) ( ) ( )1 1 1 1 2 2 1 3 3′ ′ ′= ⋅ + ⋅ + ⋅i i i i i i i i i   11 1 12 2 13 3α α α= + +i i i  

2′i  ( ) ( ) ( )2 1 1 2 2 2 2 3 3′ ′ ′= ⋅ + ⋅ + ⋅i i i i i i i i i  21 1 22 2 23 3α α α= + +i i i  

3′i  ( ) ( ) ( )3 1 1 3 2 2 3 3 3′ ′ ′= ⋅ + ⋅ + ⋅i i i i i i i i i   31 1 32 2 33 3α α α= + +i i i  

 

1

2

3

′ 
 ′ 
 ′ 

i
i
i

         
11 12 13 1

21 22 23 2

31 32 33 3

α α α
α α α
α α α

  
  =   
  
  

i
i
i

   j ji iα′ =i i   

 

Representation of coordinate vectors ii  in coordinate system Ox y z′ ′ ′  

1i  ( ) ( ) ( )1 1 1 1 2 2 1 3 3′ ′ ′ ′ ′ ′= ⋅ + ⋅ + ⋅i i i i i i i i i   11 1 21 2 31 3α α α′ ′ ′= + +i i i  

2i  ( ) ( ) ( )2 1 1 2 2 2 2 3 3′ ′ ′ ′ ′ ′= ⋅ + ⋅ + ⋅i i i i i i i i i  12 1 22 2 32 3α α α′ ′ ′= + +i i i  

3i  ( ) ( ) ( )3 1 1 3 2 2 3 3 3′ ′ ′ ′ ′ ′= ⋅ + ⋅ + ⋅i i i i i i i i i   13 1 23 2 33 3α α α′ ′ ′= + +i i i  

 

1

2

3

 
 
 
 
 

i
i
i

         
11 21 31 1

12 22 32 2

13 23 33 3

α α α
α α α
α α α

′  
  ′=   
  ′  

i
i
i

   i ji jα ′=i i  

 

j′i

iijiα

( )ji j i j icos ,α ′ ′= = ⋅i i i i

ijα

ij

introduce the new notation 
for directional cosines α

i
′i

ji

( )ij i j i jcos ,α ′ ′= = ⋅i i i i
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Representation of vector a in Ox y z′ ′ ′         a  ( ) ( ) ( )1 1 2 2 3 3′ ′ ′ ′ ′ ′= ⋅ + ⋅ + ⋅a i i a i i a i i    

              1 1 2 2 3 3x x x′ ′ ′ ′ ′ ′= + +i i i  
 
 
Use transformation of basis vectors   1 1x′ ′= ⋅a i   ( ) ( ) ( )1 1 1 1 2 2 1 3 3′ ′ ′ = ⋅ ⋅ + ⋅ + ⋅ a i i i i i i i i i  

    ( ) ( ) ( )1 1 1 1 2 2 1 3 3′ ′ ′ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ i i a i i i a i i i a i  

    11 1 12 2 13 3x x xα α α= + +  

          2 2x′ ′= ⋅a i   ( ) ( ) ( )2 1 1 2 2 2 2 3 3′ ′ ′ = ⋅ ⋅ + ⋅ + ⋅ a i i i i i i i i i  

              ( ) ( ) ( )2 1 1 2 2 2 2 3 3′ ′ ′ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ i i a i i i a i i i a i  

              21 1 22 2 23 3x x xα α α= + +  

          3 3x′ ′= ⋅a i   ( ) ( ) ( )3 1 1 3 2 2 3 3 3′ ′ ′ = ⋅ ⋅ + ⋅ + ⋅ a i i i i i i i i i  

              ( ) ( ) ( )3 1 1 3 2 2 3 3 3′ ′ ′ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ i i a i i i a i i i a i  

                    31 1 32 2 33 3x x xα α α= + +  
 

  j ji ix xα′ =          
1

2

3

x
x
x

′ 
 ′ 
 ′ 

11 12 13 1

21 22 23 2

31 32 33 3

x
x
x

α α α
α α α
α α α

  
  =   
  
  

  (18b) 

 
Representation of vector a in Oxyz         a  ( ) ( ) ( )1 1 2 2 3 3= ⋅ + ⋅ + ⋅a i i a i i a i i    
              1 1 2 2 3 3x x x= + +i i i  

 

Use transformation of basis vectors   1 1x = ⋅a i   ( ) ( ) ( )1 1 1 1 2 2 1 3 3′ ′ ′ ′ ′ ′ = ⋅ ⋅ + ⋅ + ⋅ a i i i i i i i i i  

              ( ) ( ) ( )1 1 1 1 2 2 1 3 3′ ′ ′ ′ ′ ′ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ i i a i i i a i i i a i  

              11 1 21 2 31 3x x xα α α′ ′ ′= + +  
               

          2 2x = ⋅a i   ( ) ( ) ( )2 1 1 2 2 2 2 3 3′ ′ ′ ′ ′ ′ = ⋅ ⋅ + ⋅ + ⋅ a i i i i i i i i i  

              ( ) ( ) ( )2 1 1 2 2 2 2 3 3′ ′ ′ ′ ′ ′ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ i i a i i i a i i i a i  

              12 1 22 2 32 3x x xα α α′ ′ ′= + +  

          3 3x = ⋅a i   ( ) ( ) ( )3 1 1 3 2 2 3 3 3′ ′ ′ ′ ′ ′ = ⋅ ⋅ + ⋅ + ⋅ a i i i i i i i i i  

              ( ) ( ) ( )3 1 1 3 2 2 3 3 3′ ′ ′ ′ ′ ′ = ⋅ ⋅ + ⋅ ⋅ + ⋅ ⋅ i i a i i i a i i i a i  

              13 1 23 2 33 3x x xα α α′ ′ ′= + +  
 
 

  i ji jx xα ′=          
1

2

3

x
x
x

 
 
 
 
 

11 21 31 1

12 22 32 2

13 23 33 3

x
x
x

α α α
α α α
α α α

′  
  ′=   
  ′  

  (19b) 

 
   

                The coordinates of a vector are transformed in the same way as the basis vectors. 
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The relationship (homomorphism) between these vector spaces can be established, making them equivalent in this 
sense. As a result, we can flexibly choose the most suitable representation for a given situation. Geometric vectors are 
ideal for visualizing physical models, coordinate vectors are more convenient for calculations, and tensors simplify 
and streamline the derivation of equations. 
 
 

ijk j ka bε

triangle rule

1

2

3

a
or  a

a

 
 =  
  

a
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    IV.1.8.  TENSORS                     Index notation and the summation convention  

     
 
 
 
 

A tensor is an organized multidimensional array of numerical values (numbers) 
which are called the components of a tensor. 

 
Each tensor comes equipped with a transformation law that details how the 
components of the tensor respond to a change of basis. 

 
Order of a tensor is a number of dimensions needed for its representations 
(number of indices needed to label the components). 

 
The following convention is universally accepted in modern mathematical and 
physical literature:  

 
   Einstein convention     1.   Any index can appear in lower or upper position: 

     ka ,  ix ,  k
ijc   

   2.   Any index which appears once in the expression can take values 1 , 2 , 3  
 
     ka   denotes 3 quantities:  1 2 3a ,a ,a  
     i ja b   denotes 9 quantities:  1 1 1 2 3 3a b ,a b ,...,a b  
     ijkA   denotes 27 quantities:  111 112 333A ,A ,...,A  
 

  3.   Any index which appears exactly twice in any terms of an expression 
denotes summation with respect to this index from 1  to 3  

     iia   
3

ii
i 1

a
=

= ∑    11 22 33a a a= + +  

     k ka b  
3

k k
k 1

a b
=

= ∑   1 1 2 2 3 3a b a b a b= + +  

     ij ija b  3 3

ij ij
i 1 j 1

a b
= =

= ∑∑  11 11 12 12 33 33a b a b ... a b= + + +  

With this convention the summation sign can be dropped and expressions 
are simplified.  Note that index of summation is a “dummy” variable, that 
means that any other index in the same position produces the same result: 

 
     ii kk 11 22 33A A A A A= = + +  

   4.   The coordinates of a point are usually denoted: 
  in the oblique coordinate system by     ix     (upper index)  
  in the rectangular coordinate system by    ix     (lower index) 
 

  5.   The change of coordinate system is denoted by a prime.   
The coordinates of the same point are denoted  

  in the rectangular coordinate system  Oxyz     by ix  
  in the rectangular coordinate system  O x y z′ ′ ′ ′  by  ix′  
 

 We will consider tensors in the rectangular coordinate systems.   
 They are called Cartesian tensors (or affine orthogonal tensors).  

ijkA

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&cad=rja&uact=8&ved=0ahUKEwj-1NuFyqLWAhUqxFQKHVmhAGkQjRwIBw&url=http://hpe-cct.github.io/programmingGuide/&psig=AFQjCNEjyLbsL7razKm91AqJ9_RFankKrw&ust=1505406399881593
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Transformation of coordinates Consider how the equations for transformation of coordinates can be rewritten 

using the index convention and produce some additional results.  
 
 Directional cosines ( )ji j i j icos ,α ′ ′= = ⋅i i i i          (21) 
      ( )ij i j i jcos ,α ′ ′= = ⋅i i i i           
           
        Directional cosines can be written in a matix form 
 

             jiα =   
11 12 13

21 22 23

31 32 33

α α α
α α α
α α α

 
 
 
 
 

 
1 1 2 1 3 1

1 2 2 2 3 2

1 1 3 2 3 3

′ ′ ′⋅ ⋅ ⋅ 
 ′ ′ ′= ⋅ ⋅ ⋅ 
 ′ ′ ′⋅ ⋅ ⋅ 

i i i i i i
i i i i i i
i i i i i i

 

                 jiα        j i′ ⋅i i  

 
 

ijα =   
11 21 31

12 22 32

13 23 33

α α α
α α α
α α α

 
 
 
 
 

 
1 1 2 1 3 1

1 2 2 2 3 2

1 3 2 3 3 3

′ ′ ′⋅ ⋅ ⋅ 
 ′ ′ ′= ⋅ ⋅ ⋅ 
 ′ ′ ′⋅ ⋅ ⋅ 

i i i i i i
i i i i i i
i i i i i i

 

                 ijα        j i′⋅i i  
  
  
 Transformation of the basis vectors, see equations (13) and (14):  
 

       j ji iα′ =i i                        (22’) 

 

       i ji jα ′=i i                            (23’) 
    

  
 Then transformation of coordinates (18b) with the Einstein convention becomes 
 
 
       j ji ix xα′ =                (22) 
 
 and the inverse transformation (19b) is given by 
 

       i ji jx xα ′=                (23) 

 

 Some useful identities for coefficients can be derived with tensor notations: 
 
  i ki kα ′=i i  
       i j ki k kj k ki kj k k ki kj ijα α α α α α δ′ ′ ′ ′⋅ = ⋅ = ⋅ = =i i i i i i        (26) 
  j kj kα ′=i i  
                    
 
  j jk kα′ =i i       
       i j ik k jk k ik jk k k ik jk ijα α α α α α δ′ ′⋅ = ⋅ = ⋅ = =i i i i i i  (27) 

i ik kα′ =i i  
 

                   

⇒

⇒

j′i

iijiα

( )ji j i j icos ,α ′ ′= = ⋅i i i i

ijα

i
′i

ji

( )ij i j i jcos ,α ′ ′= = ⋅i i i i

ij i j

1 0 0
1 i j

0 1 0
0 i j

0 0 1
δ

 
=  ≡ ⋅ = =  ≠   

i i

Kronecker delta
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  The zero order tensors (scalars)       a                 

 
       

Definition of the 0th order tensor The zero-order tensors are the elements of the field of real numbers  , 
which are uniquely specified in any coordinate system by a single number 
a∈ , and are invariant under the change of coordinate system: 

 
              a a′ =              
 
 
  
Example: The distance between two points is the same in any coordinate system and  

is represented by the zero order tensor (scalar). 
  
 
 Indeed, consider two points: 
  
 Point  A  with coordinates  ia  in Oxyz  and  ia′  in O x y z′ ′ ′ ′  
 Point  B  with coordinates  ib  in Oxyz  and  ib′  in O x y z′ ′ ′ ′  
 
 Let   the coordinates of the origin 0′  in the system  Oxyz  be o

ix ′  

   the coordinates of the origin 0  in the system  O x y z′ ′ ′ ′  be o
ix  

 
 Then  

   o
i ij j ia a xα ′′ = +  o

i ij j ib b xα ′′ = +  ⇒  ( )i i ij j ja b a bα′ ′− = −  

   o
i ij j ia a xα ′= +  o

i ij j ib b xα ′= +  ⇒  ( )i i ij j ja b a bα ′ ′− = −         (29) 
 
 By the Pythagorean Theorem: 
 
   ( )2d ′  ( )

3 2
i i

i 1
a b

=

′ ′= −∑  

 
     ( ) ( )

3

ij j j ik k k
i 1

a b  a bα α
=

= − −∑        use Einstein convention 

 
     ( )( )ij ik j j k ka b a bα α= − −    
 
     ( )( )jk j j k ka b a bδ= − −    from (26) ji ki jkα α δ=  
 
     ( )2

jk j ja bδ= −      rewrite using sigma 
 
     ( )

3 2

j j
j 1

a b
=

= −∑  

 
     2d=  
 
 Therefore, by taking the square roots, we formally establish this geometrical fact 

that 

     d d ′=  

 i.e. distance between points does not depend on the choice of coordinate system 
and it is invariant under linear transformation of coordinates. 
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  The first-order tensors  (vectors)                                                       ia   
 
 Consider the vector space 3  .  Let Oxyz  and O x y z′ ′ ′ ′  be two rectangular 

coordinate systems in this space.  Consider two points 
  
 Point  A  with coordinates ia in Oxyz  and  ia′   in O x y z′ ′ ′ ′  
 Point  B  with coordinates ib  in Oxyz  and  ib′   in O x y z′ ′ ′ ′  
 
 Let   the coordinates of the origin 0′  in the system  Oxyz  be o

ix ′  

   the coordinates of the origin 0  in the system  O x y z′ ′ ′ ′  be o
ix  

 
 Then  

   o
i ji j ia a xα ′′ = +  o

i ji j ib b xα ′′ = +  

   o
i ij j ia a xα ′= +  o

i ij j ib b xα ′= +               (30) 
 
 The increments of coordinates in two systems are connected through the relation 
 
   ix∆  i ia b= −  

     ( ) ( )o o
ij j i ij j ia x b xα α′ ′= + − +  

     ( )ij j ja bα ′ ′= −  
     ij jxα ∆ ′=  
 
 This equation determines the transformation of the difference between the 

coordinates of two points under the change of coordinate system from Oxyz  to 
O x y z′ ′ ′ ′ .  This transformation is also equivalent to the transformation of the 
coordinates of the point under the change of coordinate system from Oxyz  to 
Ox y z′ ′ ′  when the origin of the coordinate system is fixed (just rigid rotation): 

 
     i ji jx xα ′=  
 
 
 This consideration is a foundation for the following definition: 
 
 
Definition of the 1st order tensor The first-order tensor (affine vector or just a vector) is given in any 

coordinate system Oxyz  by a triple ix which is transformed under the 
change of coordinate system to O x y z′ ′ ′  according to the law: 

 
 
        i ji jx xα ′=             (31a) 
 
  
        j ji ix xα′ =       (31b) 
 
 . 
 Note that a zero vector is a zero vector in all coordinate systems.  The 1st order 

tensors are equivalent to coordinate vectors;  the comparison of them in the Table 
of Vectors in Euclidean Space (p.230) shows only some simplification in the 
notations.  But the advantage is in the possibility of generalizing them to arbitrary 
order tensors. 
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Example Suppose that the function ( )ix t  determines the position (trajectory) of a particle 

of mass m in space with the coordinate system Oxyz .  Show that the force acting 
on this particle is a vector. 

 
 
 For the time interval from t  to t t∆+ , the displacement of the particle in 

coordinate system Oxyz  is given by 
 
 ix∆ =    ( ) ( )i ix t t x t∆+ −  
 
 which in the other coordinate system O x y z′ ′ ′  is written as: 
 

 ix∆ ′ =    ( ) ( )i ix t t x t∆′ ′+ −   
 
 If we assume that time does not depend on coordinate system, t t′= , then 

according to (31)  
 
     ( ) ( ) ( ) ( )i j ji i ix t t x t x t t x t∆ α ∆′ ′  + − = + −   
 

 Therefore, displacement ix∆ ′  is a vector, and ix
t

∆
∆
′  is also a vector.  Moreover, 

provided that the limit exists, 
 

     i

t 0

x
lim

t∆

∆
∆→

′
=v  

 
 is also a vector, which defines instantaneous velocity of the particle at the 

moment of time t .  
 
 By similar arguments, the acceleration a  is also a vector with components ia .  

Then, according to Newton’s Second Law  
 
     i iF ma=  
 
 holds in any coordinate system, and the force is a vector 
 
     m=F a  
 
 i.e. force is defined both by amplitude and direction and cannot become a scalar 

by a choice of coordinate system. 
 
    
     In general, vector cannot become a scalar by a choice of coordinate system. 
 
                     
 
 
Dot product       ⋅a b    1 1 2 2 3 3 a b a b a b= + +    i i a b=      tensor notation   
 
 
 

Norm        a = =a  2 2 2
1 2 3a a a   = + + = ⋅a a  i i a a=     tensor notation  
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    The second-order tensors (matrices)                ijA    
 
 Consider the ordered triple of vectors which in the coordinate system Oxyz  are 

written as 
     i1 i2 i3a ,a ,a   

 They are described by the 9 components 

     
11

i1 21

31

a
a a

a

 
 =  
  

,
12

i2 22

32

a
a a

a

 
 =  
  

,
13

i3 23

33

a
a a

a

 
 =  
  

 

 
 This elements can be organized into one unit as 
 

     
11 12 13

ij 21 22 23

31 32 33

a a a
A a a a

a a a

 
 =  
  

              (32) 

 
 According to (31), under the change of coordinates from Oxyz  to Ox y z′ ′ ′ , 

vectors i1 i2 i3a ,a ,a  are transformed to 

     i1 ik k1a aα′ =  

     i2 ik k 2a aα′ =  

     i3 ik k 3a aα′ =  
 
 The simultaneous transformation of the components of all three vectors under 

the change of coordinate system can be performed in the following way 
 
     ij ik jm kmA Aα α′ =  
  
 
 
Definition of the 2nd order tensor The quantity defined by nine components ijA ∈  which are transformed 

under the change of coordinate system according to the law 
 

  ij ik jm kmA Aα α′ =                  (33) 

 
is called a second-order tensor. 
 

 
 
A second-order tensor can be written as ijA  or in the matrix form (32).  

 
A second order tensor defined in one coordinate system can be determined in any 
other coordinate system according to transformation (33).  
 
 If all components of a tensor are equal to zero, then the tensor is called a zero  
tensor.  It is obvious that a zero tensor is a zero tensor in all coordinate systems. 
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Dyadic  A 2nd order tensor can be obtained as a listing of all cross products of the 

components of two vectors ia  and jb      
 
 

         i ja b  
1 1 1 2 1 3

2 1 2 2 2 3

3 1 3 2 3 3

a b a b a b
 a b a b a b

a b a b a b

 
 =  
  

  dyadic (outer product)      (34) 

 
 
 

The transformation of the vectors is given by 

i ik ka aα′ =  

j jm mb bα′ =  

Then transformation of (34) is defined by 

i j ik jm k ma b a bα α′ ′ =  

 
        Therefore (34) is a second-order tensor.  It is called dyadic and is denoted by 
 

i ja b  
 
Vector notation for dyadic is ab . Note that ≠ab ba . 
 

 
 
 
Example 1      (stress tensor)    

  
Consider a point M in space.   
A force acting on some element of area dS containing point M is 

dS=f p   

where p  is a stress.  Vector p  can be expanded into 

1 1 2 2 3 3dS dS dS dS= + +p p p p  

where vectors 1 2 3, ,p p p  are the components of the stress tensor. 
 
 

 
 
Example 2      (the deformation tensor in the linear theory of elasticity)  
 

        i k
ik

k i

u u1u
2 x x
 ∂ ∂

= + 
∂ ∂ 

 

 
 
 
 
Example 3      (the rate of the deformation tensor)   
 

        i k
ik

k i

v v1v
2 x x
 ∂ ∂

= + 
∂ ∂ 
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  IV.1.9.  TENSOR ALGEBRA Consider some operations with tensors of different order. 
 

Transpose      T
ij jiA A=  

  
Addition       Let ijA , ijB  be the 2nd order tensors, then define 
 
        ij ij ijC A B= +  
 
        Check if the result is a 2nd order tensor: 

        ij ik jm kmA a Aα′ = ,     ij ik jm kmB a Bα′ =  

        ( )ij ik jm km ik jm km ik jm km km ik jm kmC a A a B a A B a Cα α α α′ = + = + =  

        Therefore, the defined sum is a tensor and transforms the same way. 

 
Multiplication by a scalar   ca ,   icx ,  ijcA   
 
Outer product of tensors   ijkm ij kmC A B=    fourth-order tensor  (outer product) 
 
Contraction of tensors   iiA       zero order tensor  
 

ik kA b  multiplication of a matrix by a vector, the result is a 
vector (1st order tensor) 

 
Matrix multiplication    ik kjA B      matrix multiplication (2nd order tensor) 

 
Dot product      i ia b      inner product, dot or scalar product (0th order tensor) 
 
              Note that contraction reduces the order of a tensor. 
 
 
Symmetry      ij jiA A=     symmetric tensor 
 
        ij jiA A= −     antisymmetric tensor 
 

Symmetry properties of tensors are not changed under the change coordinates:  
a tensor which is symmetric (antisymmetric) in one coordinate system is 
symmetric (antisymmetric) in any other coordinate system.  General forms 
 
symmetric    antisymmetric 
 

11 12 13

ij 12 22 23

13 23 33

a a a
A a a a

a a a

 
 =  
  

  
12 13

ij 12 23

13 23

0 a a
A a 0 a

a a 0

 
 = − 
 − − 

 

 
 
Any 2nd order tensor ijT can be represented as a sum of a symmetric and 
antisymmetric tensors.  In fact, such an expansion can be written as 
 

ij ij ijT S A= + ,  where  ( )ij ij ji
1S T T
2

= +  symmetric 

      ( )ij ij ji
1A T T
2

= −   antisymmetric 
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   Kronecker delta ijδ     The Kronecker delta is a symmetric tensor (unit tensor) defined as 
 

 

ij i j

1 0 0
1 i j

  0 1 0   
0 i j

0 0 1
δ

 
 = = ⋅ = =   ≠  

i i     (35)  

   
 

 
 
Operations with ijδ   
 
 
symmetry        ij jiδ δ=  
 
change of index       ik i ka aδ =     This expression according to tensor convention yields:  
 
             1k =  i1 i 11 1 21 2 31 3 1a a a a aδ δ δ δ= + + =  

             2k =  i2 i 12 1 22 2 32 3 2a a a a aδ δ δ δ= + + =  

             3k =  i3 i 13 1 23 2 33 3 3a a a a aδ δ δ δ= + + =  

change of index      ik km imA Aδ =     

        ij jk ij kj ikA A Aδ δ= =  
 
 

tensor inverse     1
ik kj ijA A δ− =  

 
 
contractions      ii 3δ =   

        ik kj ijδ δ δ=  

        im mk kj ijδ δ δ δ=  
 
 
factoring      ik k iA b cb−  ik k ik kA b c bδ= −  ( )ik ik kA c bδ= −  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

             
 
 

( )
Leopold Kronecker
   1823 1891− ( )

Tullio Levi-Civita
   1873 1941−

Getulio Alviani



Chapter IV   Vector and Tensor Analysis                             IV.1 Vectors and Tensors                                         September 9, 2025        240 
 
  Alternating unit tensor ijkε    (Levi-Civita tensor) is a special 3rd order tensor defined as 

 
          ( )ijk i j kε = × ⋅i i i   consists of 27 entries 

 

ijk

1   if   ijk   123, 231, or 312
 0   if    any two indices are alike

1   if   ijk   321, 213, or 132
ε

=
= 
 − =

    (36) 

 
 
Rules         ijk jikε ε= −   

ijk ikjε ε= −  

ijk kjiε ε= −  

 

ijk jki kijε ε ε= =  

 
 

Relations between Levi-Civita tensor and Kronecker delta    
      

il im in

ijk lmn jl jm jn

kl km kn

  
δ δ δ

ε ε δ δ δ
δ δ δ

=         

 (37a) 
 

 

ijk ilm jl km jm klε ε δ δ δ δ= −          (37b) 

 
 

ijk mjk im2ε ε δ=            (37c) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

                                  “6th order tensor” 
 
 , BYU

( )

sign is changed under 
interchange of any 
pair of subscripts
totally antisymmetric tensor

repeated  interchange of subscripts

th6  order tensor( )thpermutation tensor 6 order

contractions nd2  order tensor

th4  order tensorcontractions
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Cross-product       ×a b  
1 2 3

1 2 3

1 2 3

  a a a  
b b b

=
i i i

 

 
            ( ) ( ) ( )2 3 3 2 1 1 3 3 1 2 1 2 2 1 3 a b a b a b a b a b a b= − − − + −i i i  
 
 

 
 

( )i
×a b  ijk j ka bε=            (38) 

 
 

( )1×a b  1 jk j k 1 jk j ka b a bε ε= +  123 2 3 132 3 2a b a bε ε= +  2 3 3 2 a b a b= −  

( )2
×a b  2 jk j k 2 jk j ka b a bε ε= +  231 3 1 213 1 3a b a bε ε= +  3 1 1 3 a b a b= −  

( )3
×a b  3 jk j k 3 jk j ka b a bε ε= +  312 1 2 321 2 1a b a bε ε= +  1 2 2 1 a b a b= −  

 
 
 
 
Exercise         Transformation of ijδ   obeys the tensor rule (33). 
 
          Transformation of ijkε  obeys the tensor rule (44). 
 
          Therefore, indeed, they are the 2nd oder and the 3rd order tensors. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://www.google.com/url?sa=i&rct=j&q=&esrc=s&source=images&cd=&ved=0ahUKEwiYsofN7ebVAhUQwmMKHYekAX0QjRwIBw&url=https://www.pinterest.com/pin/390968811372186091/&psig=AFQjCNFOW2_dfOR6nSJoqPdyrdSB96Ex8g&ust=1503354332147715
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Examples of the application of tensors ijδ  and ijkε  to prove vector identities 

 
Example 1      Prove that the cross product is anticommutative: 

        × = − ×b a a b  
   
      Proof:   apply Eqn.(38), and since ijk ikjε ε= −  
 
        ( ) ( )ijk j k ijk k j ikj k ji i

b a a b a bε ε ε× = = = − = − ×b a a b           ■ 
 
 
 
 
 
 
 
 
    
 
 
 
 
 
 
 
 
Example 2      Prove Lagrange’s identity, Eqn.(25): 
 
        ( ) ( ) ( )( ) ( )( )× ⋅ × = ⋅ ⋅ − ⋅ ⋅a b c d a c b d a d b c  
 
 
      Proof: apply Eqn. (38) for tensor representation of cross-product 
 
        ( ) ( )× ⋅ ×a b c d  ( ) ( )i i

= × ⋅ ×a b c d  
 
            ijk j k ilm l ma b c dε ε=  
 
            ijk ilm j k l ma b c dε ε=               contraction (37a)  
 
            ( )jl km jm kl j k l ma b c dδ δ δ δ= −  
 
            jl km j k l m jm kl j k l ma b c d a b c dδ δ δ δ= −  
 
            ( )( ) ( )( )jl l km m j k jm m kl l j kc d a b d c a bδ δ δ δ= −   change of index 

 
            j k j k j k j kc d a b d c a b= −  
 
            j j k k m m l la c b d a d b c= −  
 

( )( ) ( )( )= ⋅ ⋅ − ⋅ ⋅a c b d a d b c           ■ 
 
 
 
 

Rue Lagrange, Paris
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Reduction to principal axes  Contraction operation 
 
            i ik ka A b=  
 

results in a vector.  It can be treated as a rotation of a vector and changing of its 
length (linear transformation).   
 
For a given 2nd order tensor ikA  it is important to determine if there are some 
vectors which are not rotated after transformation.   
 
This question is formulated in the familiar form of an eigenvalue problem: 
 
 
 

Eigenvalue problem    Find values of parameter λ  for which equation 
  

            ik k iA x xλ=                          (39) 

 
        has a non-trivial solution ix .   
 

They are called: λ  eigenvalue 
            ix  eigenvector    
 

Eigenvectors if they exist determine the principle axes (coordinate system) of the 
tensor ijA .  The problem is to find this coordinate system and to transform a tensor 
to it.  Rewrite equation (35) in the form: 
 
    ( )ik ik kA x 0λδ− =  
 
The necessary condition for this equation to have a non-trivial solution is: 
 
    ik ikA 0λδ− =  characteristic equation         (40) 
 
The tensor written in the principle coordinate system has the simplest form. 

 
 
        Formulate the eigenvalue problem in the traditional vector-matrix form. 
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        Einstein’s manuscripts (from the former Museum of Letters and Manuscripts, Paris) 
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   IV.1.10.  SUMMARY OF TENSORS   
 
 The Cartesian tensors are defined in the rectangular coordinate system as the 

quantities which under the change of the coordinate system obey the following 
laws of transformation of its components: 

 
 
 
  a a′ =        Zero-order tensors (scalars)  (41) 
 
   i ij jx xα′ =       First-order tensors (vectors)  (42) 
 
  ij ik jm kmA Aα α′ =      Second-order tensors (matrices)  (43) 
 
     
 

1 2 n 1 1 2 2 n n 1 2 n i i i  i k  i k  i k  k k kA  Aα α α′ =
 


 nth-order tensors           (44) 

 
 
 
 The Einstein convention on notation and summation is used in these definitions.   

 
The coefficients  

( )ji i j i jcos ,α ′ ′= ⋅ =i i i i   

are the cosines of the angles between the basis vectors of coordinate systems (21). 
 
 The tensors with the higher order n consist of n3  real numbers. 
   
 
 If the components of a tensor in one coordinate system 0xyz  are known, then 

using equations (41-44), we can determine the components of a tensor in the 
rotated coordinate system 0x y z′ ′ ′ . 

 
 
Vector space of tensors nV  The set of all tensors of order n together with operations multiplication by a scalar 

and addition, form a vector space nV   
 
  
          

1 2 n i  i   i nA  V∈


        (45) 
  
  
 Tensors can also be defined in the generalized curvilinear coordinate systems.  
 Definitions in the m-dimensional geometrical space yield nth order tensors which 

have mn components.  
 
  
 
 
 
 
 
\ 
 
 

https://www.google.com/imgres?imgurl=https://s-media-cache-ak0.pinimg.com/736x/b7/6f/6d/b76f6dc5d402c69047c7e0855022b6d3--victor-vasarely-optical-illusions.jpg&imgrefurl=https://www.pinterest.com/ldverrall68/works-of-art/&docid=3JLqSUSD4MKTmM&tbnid=qZ8qXppepT-9oM:&vet=10ahUKEwj69Pq_7ebVAhVD1mMKHaqxBRw4yAEQMwhKKEgwSA..i&w=650&h=650&bih=1173&biw=2327&q=op%20art%20vectors%20geometric%20vasarely&ved=0ahUKEwj69Pq_7ebVAhVD1mMKHaqxBRw4yAEQMwhKKEgwSA&iact=mrc&uact=8
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Orthonormal right coordinate system  { }1 2 3, ,i i i  , i 3∈i   
 

 

    ij i jδ = ⋅i i   
1 0 0

 0 1 0
0 0 1

 
 =  
  

 

        
     

1 2 3× =i i i  2 1 3× = −i i i  

2 3 1× =i i i  3 2 1× = −i i i      ( )ijk i j kε = × ⋅i i i  

3 1 2× =i i i  1 3 2× = −i i i  
 

1 1 2 2 3 3× = × = × =i i i i i i 0  
 

 

Kronecker delta       ik i ka aδ =       change of index     

ik km ki km imA A Aδ δ= =     

           ik k iA b cb−  ( )ik ik kA c bδ= −   factoring 

           1
ik kj ijA A δ− =       tensor inverse 

 Levi-Civita tensor 
           ijk jikε ε= −   

ijk ikjε ε= −  

ijk kjiε ε= −  

ijk jki kijε ε ε= =  

ijk ilm jl km jm klε ε δ δ δ δ= −    contruction  

 
 

Transformation of coordinates    { }1 2 3, ,i i i  and { }1 2 3, ,′ ′ ′i i i            0xyz   →    0x y z′ ′ ′   (rotation) 
 
           ijα  i j′= ⋅i i        
           jiα  j i′= ⋅i i        
 

i ji jα ′=i i   i j ki k kj k ki kj k k ki kj ijα α α α α α δ′ ′ ′ ′⋅ = ⋅ = ⋅ = =i i i i i i  

i ij jα′ =i i   i j ik k jk k ik jk k k ik jk ijα α α α α α δ′ ′⋅ = ⋅ = ⋅ = =i i i i i i  
            

   ki kj ijα α δ=             

    ik jk ijα α δ=  
 
 
 
 Cartesian tensors       a a′ =        zero-order tensors (scalars) 

i ij jx xα′ =       first-order tensors (vectors)   

    ij ik jm kmA Aα α′ =      second-order tensors (matrices) 

1   if   ijk   123, 231, or 312
 0   if    any two indices are alike

1   if   ijk   321, 213, or 132

=
= 
 − =

ij i j

1 0 0
1 i j

  0 1 0   
0 i j

0 0 1
δ

 
 = = ⋅ = =   ≠  

i i

( )ijk i j kε = × ⋅i i i
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Vector operations    a              ia  
 
         ka              ika  
 
         +a b             i ia b+  
 
         ⋅a b              i ia b  
 
         ×a b             ijk j ka bε  
 
 
 

Properties      ⋅a b      = ⋅b a  

         ( )k ⋅a b    ( ) k= ⋅a b  ( ) k= ⋅a b  

         ( )⋅ +a b c    = ⋅ + ⋅a b a c  
 
         ×a b     = − ×b a  
 
         ( )× +a b c   = × + ×a b a c  
 
         ×a a      = 0  
 
 
 

Triple Scalar product   ( ) ⋅ ×a b c           ijk i j ka b cε  
 
 

Triple Vector product   ( ) × ×a b c           ijk klm j l ma b cε ε   
 
 
 

Identities      ( ) × ×a b c   ( ) ( ) = ⋅ − ⋅a c b a b c  
    

         ( )× ×a b c    ( ) ( ) = ⋅ − ⋅a c b b c a  
 

( ) ( )× ⋅ ×a b c d  ( )( ) ( )( ) = ⋅ ⋅ − ⋅ ⋅a c b d a d b c   Lagrange identitity 

 
         ( ) ( )× × ×a b c d  ( )( ) ( )( ) = × ⋅ − × ⋅ a b d c a b c d  

             ( )( ) ( )( ) = × ⋅ − × ⋅ a c d b b c d a  

             ( )( ) ( )( ) = × ⋅ − × ⋅ c d a b c d b a        
 
         ( ) ( ) ( )× × + × × + × × =a b c b c a c a b 0  

 
         ( ) ( ) ( ) ( ) ( ) ( ) 0× ⋅ × + × ⋅ × + × ⋅ × =a b c d b c a d c a b d  
 
         ( ) ( )× × ×a b c b   ?=   
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