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VIIL.3.1 HEAT EQUATION IN PLANE WALL - 1-D Heat Equation

VIIL.3.1.1 BASIC CASE:

u“(x)

1) Separation of variables:

Boundary conditions:

2) Sturm-Liouville Problem:

3) Equation for T :

4) Solution:

Initial condition:

Homogeneous equation, Homogeneous Boundary Conditions

Fu_ it
o’ a ot

Initial condition:

Boundary conditions:

[W]_,=0,1>0 (I Horll kind)

[W]_,=0,t>0 (I orll kind)

[u] _, =[X]_,T()=0 = [X]._,=0

[u] , =[X]_, T()=0 = [X]._, =0

XT_I1T

X a1 ”

X"—uX=0

[X],, = = p=-2  n=12,..
[X]x:L = 0 X" (x)

T'—oulT =0

T'+aA’T =0 = T, (t)=e "
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Example 1

u[x,{:)

Uo®)

Neumann-Neumann Problem

Separation of variables:

Boundary conditions:

Solution of SLP:

Solution for T

Solution:

Solution of IBVP:

2
8_u:a28_u u(x,t):

P Py xe(O,L), t>0

u(x,O) =u, (x)

[6—@ =0 t>0
ox |,

[6“} =0 t>0  (Neumann)
x=L

Initial condition:

Boundary conditions: (Neumann)

ox

(both boundaries are insulated)

x=0 a"g)c”) -x(0r@)=0 = x70)=0
x=1L a”gi’t) =x(L)rl)=0 = x(L)=0

Ay =0 X, =1
ln :K Xn :cos(ﬂxj n=],2,...
L L
T'+0Mvn2T:0 Tn(z‘): —al]t

T'+a-0-T=0

u(x,t)=a,X,T, + ianX T,

n'n
n=1 n=1

1 L
a, = zjuo (x)dx
0

2_2

I”o (x) dx LT o
u(x,t)=0—+%2hu0 (ﬂcos(%x}dx}cos(%x]ea LZ

t
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Particular case:

Comments:

1)

2)

3)

4)

5)

L

2
uy (x) = ]00+10000(x—3j [°c]. é: @ =500° [%} (steel), L=0.Im

t=60 sec
1400
u, (x
0] o (%)
t=60
1201
t =300
t=600
11D'\"{_/ i
]L
u, :7J.u0 (x)dx
Twsp I L

0 o002 004 008 008 01

The solution is in the form of an infinite series.
If the initial temperature distribution given by the function uo(x) is

integrable, then the Fourier series is absolutely convergent and the function
u(x, t) satisfies the Heat Equation and initial and boundary conditions.

Therefore, it is an analytical solution of the given IBVP.

With the increase of time, the solution approaches the steady state (the
averaged temperature in the slab ). Boundaries are insulated, and there are
no heat sources. As a result, no heat escapes into the surroundings. The
driving force — temperature gradient — is directed toward the areas with
lower temperature. There exists a process of redistribution of heat energy
that produces the uniform temperature in the slab.

Basic functions consist of the product
non-dimensional time
22

nr 7}17[2 it
u, (x,t):cos(ﬂxje e COS(ﬂxje (v [LZJ
L L

where the cosine function provides the spatial shape of the temperature
profile; and the exponential function is responsible for decay of the
temperature profile in time.

The rate of change of temperature depends on the thermal diffusivity « .

Very often, a /-D Heat Equation is treated as a model for heat transfer in a
long very thin rod of constant cross-section whose surface, except for the
ends, is insulated against the flow of heat Although, it is formally a correct
model, the practical application of it is very limited. But there is another
interpretation of a /-D model, which is more reliable.

Consider a 3-D wall with finite dimension in the x-direction (within x =0
and x=L) and elongated dimensions (may be infinite) in y- and z-
directions. If the conditions at the walls x =0 and x =L are uniform, and
the initial condition is independent of variables y and z, then the variation of
temperature in the y- and z-directions is negligible (no heat flux in these
directions)

u_ou_,
oy Oz

and the heat equation becomes /-D
o’u 1 ou
o ad

It defines the variation of temperature along any line perpendicular to the wall.
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Example 2

[w'+Hu] _, =0

x=L

Separation of variables:

Boundary conditions :

Solution of Sturm-Liouville problem:

Solution for 7(?):

Solution:

Dirichlet-Robin Problem

%:é% u(x,t): xe(O,L), t>0
Initial condition: u(x,0)=u,(x)
Boundary conditions: [u] _, =0 (Dirichlet)
[3—1 + HulL =0 (Robin) H = %

H, =2

X, =sin(A,x) n=12,..

where eigenvalues A, are positive roots of the characteristic equation:

Acos AL+ H sin Ax =0

AN A /\ )
] \/1\/ \/ \/

0 2 4 Iamahda g 1o 12

With determined eigenvalues, the solution for 7 becomes:
T (t) = ot

n

u(x,t)= ian sin(2,x) e

n=1

This solution satisfies the heat equation and boundary conditions. We
want to define coefficients g, in a such a way that the obtained

solution satisfies also the initial condition at ¢ =0 :

u(x,O) = ian sin(/lnx) =u, (x)

n=1
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In our problem, functions {X, (x)=sin(2,x)} arc obtained as

eigenfunctions of the Sturm-Liouville problem for the equation

X"+ 1°X =0; therefore, the set of all eigenfunctions is a complete
system of functions orthogonal with respect to the weight function
p =1. Then, the last equation is an expansion of the function u, (x)

in a generalized Fourier series over the interval (O,L) with coefficients

defined by
L
J.u,, (x)sin(A,x)dx
a,="—
jsinz (ﬁnx)dx
0

Then, the solution of the initial-boundary value problem is given by

L
. J.“o (x)sin(ﬂnx)dx
u(x,t)= |4 sin(/lnx)efa’i'g’
" J.sinz (A,x)dx

0

where the squared norm of eigenfunctions may be evaluated after
integration as

L .
bl =i (e £ 2 5L)
0

n

Finally, the solution is:

'L[uo (x)sin(ﬂnx)dx

_ S 0 . ﬂuft
u(x,t)= ; L sn(2AL) sin(4,x)e

2 4
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MAPLE: Let L=2, H=3, u,(x)=x(2-x), a=0.0625

>restart;

>with(plots):

>L:=2;H:=3;A:=0.0625;

L:=2
H:=3

A :=0.0625

Characteristic equation:
>w(x) :=x*cos (x*L)+H*sin (x*L) ;

w(x):=xcos(2x)+3sin(2x)
>plot(w(x),x=0..10);

i

DJ 4 ¥

oo

Eigenvalues:
>n:=1: for m from 1 to 500 do z:=fsolve (w(x)=0,x=m/10

if type(z,float) then lambda[n]:=z: n:=n+l fi od:
>for i to 5 do lambda[i] od;

1.358229874
2.768911636
4235147453
5.738636645
7.264403196
>N:=n-1;
N:=32
>n:="n':i:="i"':
Eigenfunctions:
>X[n] :=sin(lambda[n] *x) ;
X =sin(A x)
Squared-norm:
>NX[n] :=int (X[n]*2,x=0..L);
] —Cos(2A )sin(2A )+2 A
NXn = E %

n

Initial condition:
>ul (x) :=x* (L-x)+1;

ul(x) =x(2-x)+1

Fourier coefficients:
>a[n] :=simplify (int (ul (x) *X[n] ,x=0..L) /NX[n]) ;

2(2% sin(22 )+ “cos(22, )+2cos(22 ) =22 °)

a =-—
n

A" (~cos(2 A )sin(2 )+2 4 )

.. (m+1) /10) :
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Solution - Generalized Fourier series:

>u(x,t) :=sum(a[n] *X[n] *exp (-lambda[n] *2*t/A”*2) ,n=1..N) :
>plot3d(u(x,t) ,x=0..L,t=0..30,axes=boxed,style=wireframe) ;

>animate ({ul0(x) ,u(x,t)},x=0..L,t=0..50,frames=200, axes=boxed) ;

1-5_; u(x,1)

h"dd'uﬁ}{ﬂz'ib"z

>u(x,0) :=subs(t=0,u(x,t)):

>u(x,1l) :=subs(t=1,u(x,t)):

>u(x,5) :=subs(t=5,u(x,t)):

>u(x,10) :=subs (t=10,u(x,t)):

>u(x,20) :=subs (t=20,u(x,t)):

>plot ({ul0(x) ,u(x,0) ,u(x,1),u(x,5),u(x,10) ,u(x,20)},x=0..L);

0¥

0 02 04 06 08 1 12 14 16 18 2
ke



624 Chapter VIIl PDE VIIL.3 Transient Initial-Boundary Value Problems November 4, 2023

VIIL.3.1.2 GENERAL CASE Non-Homogeneous Equation, Non-Homogeneous Boundary Conditions
U (xt) 2
Uo(x) o‘u 1 Ou
—+F(x)=—— ulx,t), xe(0,L), >0
: T P0)=L2 (), xe(or)
'gl I .. 1 d. . . ( 0)_ ( )
Ug ) , nitial condition: ulx,0)=u,\x
|
B : - Boundary conditions: [u]_, =g, >0 (I II or IIlrd kind)
REEEEsE TSR
? ¢ [u]_, =g,. t>0 (Il or Illrd kind)
I Steady State Solution Definition A time-independent function which satisfies the heat
equation and boundary conditions obtained as
u, (x) =lim u(x, 1)
t—
is called a steady state solution
Substitution of a time-independent function into the heat equation leads
to the following ordinary differential equation:
62
u; +F(x)=0 u, (x), xe(O,L)
Ox
subject to the boundary conditions of the same kind as for PDE:
[u,].,=g»t>0 (I I orllrd kind)
[u,]., =g, t>0 (I I or lIrd kind)
General solution of ODE:
u,(x)= —IUF(x)dx]dx+c,x+cz
Solutions of BVPs for plane wall with uniform heat generation are
provided by the Table.
II Transient Solution: Define the transient solution by equation:

U(x,t) = u(x,t)— u, (x)

then solution of the original problem is a sum of transient solution and
steady state solution:

u(x, t) = U(x, t)+ ug (x)

Substitute it into the Heat Equation:

2 62

S lar (=2

Ox Ox a Ot

. u, .
Since —-+F(x)=0, it yields

X

U _ 30

ox’? Ot
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Solution for U(x,t)

III Solution of IBVP:

We obtained the equation for the new unknown function U(x,) which
has homogeneous boundary conditions:

x=0 [U]x:() = [”]x:() —[us ])::() =g -8 =0
x=L [U]x:L = [”L:L ~ [, ]x:L =8,-8,=0

As a result, we reduced the non-homogeneous problem to a
homogeneous equation for U(x,z) with homogeneous boundary

conditions. Initial condition for function U(x,¢):
U(x,O) = u(x,O) —u, (x) =u, (x) —u, (x)

We consider the following basic initial boundary value problem:

2
‘ng:éaa—(t] Ulx.t), xe(0.L),t>0
initial condition: U(x,()) =u, (x) —u, (x)
boundary conditions: [U]X:{) =0, t>0

[U]x:L =0 >0

We already know a solution of this basic problem obtained by
separation of variables:

U(x.t) = iaanef‘””I’
n=1

where coefficients a, are the Fourier coefficients determined with

the corresponding initial condition for the function U (x, t):
L

.([[”0(’6)_% (x)] X, (x)ax

anz

_:[Xf (x)dx

Solution of the original IBVP is a sum of steady state solution and
transient solution:

u(x,t) =u, (x)+U(x,t)
=u, (x)+ianX"ef‘”'7”
n=1

.L[[ua (x)—u, (x)]X, (x)dx

_0
a, = 7

IX; (x)dx

0
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Example 3 Dirichlet-Dirichlet problem with a uniform heat generation:
2
1
a—erF:—(’)—"‘ u(x,t): xe(0.L), t>0
U(x) Oox a ot
Uolx)
: Initial condition: u(x,O) =u, (x)
i %
il 2 Boundary conditions: u(0,)=g, t>0 (Dirichlet)
I
£ ; u(L,t) =g, t>0 (Dirichlet)
gy B

1) Steady State Solution:

Let F' = const , then integrating the equation twice, we come up with
the following solution:

ou
—=-Fx+g
ox
_ 2
U, =——x" +c,x+c,

Apply boundary conditions to determine the constants of integration:

x=0 = c,=g
F
x=L = —?L2+CIL+g1:g2
- FL
Y il /L2
L 2
F 8,8 L
u (x)=- + + X+
Example: F=2,g=1,g,=2,L=2
3
2

u, (x):—x2+%x+l

steady state solution

0 1 1 1
0 0.5 1 1.5 2

2) Transient Problem:

2
%=éﬁa—lf] U(x,t): xe(0,L), >0
initial condition: U(x,()) =u, (x) —u, (x)
boundary conditions: U (O,t) =0 (Dirichlet)

U(L,t) =0 (Dirichlet)
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Solution of this basic problem (Dirichlet-Dirichlet) obtained by
separation of variables:

A, zﬂ, X, (x):sin(ﬂxj
L L

@ : @ nr ) -
U(xt) =Y. a,X, e =Ya, sin(—xje v
n=1 n=1I L

where coefficients a, are the Fourier coefficients determined by

the corresponding initial condition for the function U (x, t):
L

J.[u,) (x)—us (x)] X, (x)dx B .
a, =" =%;|;[u0 (x)—u, (x)]sin(ijdx

Exj (x)d

3) Solution of IBVP:
Return to the original function u (x,7):

() =U ), ()=, () S o e 5

n=1

Then the solution of the non-homogeneous heat equation with non-
homogeneous Dirichlet boundary conditions becomes:

Remark:

In practice, instead of the exact solution defined by the infinite
series, the truncated series is used for calculation of the
approximate solution. How many terms are needed in the
truncated series for the accurate approximation? Comparison of
the exact solution (which is also a truncated series but with a very
large number of terms, which we assume, provides an accurate
result) with the calculation with a small number of terms in a
truncated series shows that the accuracy depends on time: the
further we proceed in time, the more accurate becomes an
approximate solution (why?). For uniform characterization of
physical processes, the non-dimensional parameters are used in
engineering. In heat transfer, non-dimensional time is defined by
the Fourier number:

Fo=(z—2t

where « is the thermal diffusivity.

In engineering heat transfer analysis, a 4 term approximation is
considered as an accurate approximation for all values of the
Fourier number. For simplicity, very often even a 1 term
approximation is used, which is considered to be accurate for
Fo>0.2 (error in most cases does not exceed /%, and this is a
convention in engineering heat transfer).
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Consider comparison of the exact solution (100 terms) with 1 and 4 terms
approximations.

Results are calculated for:

Fo=0.0
Fo=0.05
Fo=0.2
Fo=04

The lowest curve is a steady state solution.

As can be seen from the figure, for Fo > 0.2, all results coincide.

U(x,t)

Zwihaf
el fron

Fo>0.2 is generally adopted [see Incroper and De Witt] as a condition
for application one term approximation:

one-term solution becomes accurate for Fo > 0.2 .
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VIIL.3.2.1 HEAT EQUATION in CARTESIAN COORDINATES 2-D

General Problem:

U (x,4,t)

1. Steady State Solution

2. Transient Solution (Basic Case)

az—u+az—u+F(x,y):ia—u u(x,y,t): (x,y)e(O,L)x((),M)

o’ oy’ a ot

Initial Condition: u(x, y,()): u, (x,y) (x.y)e[0,.L]x[0,M]

Boundary Conditions: x=0  [u] _, = f;(») ye(,M) t>0
x=L [u]X:L:ﬁ,(y) ye(O,M) t>0
y=0 [u]y:() =f1(x) xe(O,L) t>0
y=M [u]y:M = /,(x) xe(O,L) t>0

Find time-independent solution u,(x, y). We are looking for a steady
state solution which satisfies the differential equation:
o°u, ou
~+—+F(x,y)=0
g T E )

and the boundary conditions of the same type as in the general problem

x=0 [u]_, =f() ye(.M) t>0
x=L [u]_, =/fi(y) ye(.M) t>0
=0 [u]_=/(x xe(0,L) >0
y=M [u]_ =/f(x) xe(0,L) >0

This is the BVP for Poisson’s Equation for which, in general, all
boundary conditions are non-homogeneous.  The superposition
principle should be used to reduce the problem to the set of
supplemental basic problems (see VIII.3.4, p.597).

Introduce the transient function as
U(x, V, t) = u(x, V, t)— u, (x,y)
It can be verified that function U satisfies homogeneous Heat Equation
o’U o°U 10U
Pl
Ox oy a ot

with four homogeneous boundary conditions (of the same type):

x=0 [U]_, =0 yelo.M) t>0
x=L [U]_, =0 yelo.M) t>0
y=0 [U]_, = xe(0,L) t>0
y=M [U]_, =0 xe(0.L) t>0

and the initial condition:

U(x,9.0)=u,(x.y)-u,(xy) =U,(x.y)
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Separation of variables — 1*' stage:

Helmholt; Equation

Separation of variables — 2™ stage:

We assume that the function U (x, y,t) can be written as a product of
two functions

U(x,y.t)=@(x,y)T (1)
where @ (x, y) is the function of space variables. Substitute it into the
Heat Equation

2 2
D OPr L pp
(04

o’ oy’
Divide equation by @T :
ro o
o’ " o’ 1T
®  aT
or using Laplacian operator
Vo 1T
@ aT

Left hand side is a function of space variables only and the right hand
side is a function of the time variable, therefore, they have to be equal
to a constant (separation constant):

Vo 1T
D aT

Boundary conditions for separated functions are:

U], =[®@]_,T()=0 yeloM) t>0 = [@] =0
[U]_, =[®] _,T(t)=0 yelo.M) t>0 = [@]_ =0
U], =[®]_,T()=0 xe 0L >0 = [@],_, =0
U], =[®]_, T(t)=0xe 0L t>0 = [@],_, =0

There are four homogeneous boundary conditions for the function @ .

From the separated equations, consider the equation

Vo = po

which has a structure of equation of the eigenvalue problem for
differential operator V7. It is called the Helmholtz Equation.

The solution of the Helmholtz Equation subject to boundary conditions
can be easily obtained by the eigenfunction expansion method.
Assume D(x,y)=X(x)Y(y)
Substitute into the Helmholtz Equation

VI(XY)= XY+ XY"=(XY
Divide by XY

X” YII

-+ — =

X Y

Separation of variables in the boundary conditions yield:
ye(0.M) [@] ,=[Xx(0)]r(»)=0 = [Xx]_, =0
ye(0.M) [@] _[X NY(y)=0 = [x]_ =0
xe(0,L) [@] [Y )]=0 = Y], =
xe(0,L) [@] (x)r(m)]=0 = (Y], =0

Note, that we have complete pairs of homogeneous boundary
conditions both for X and Y.
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Now, solve consequently the Sturm-Liouville problems for X and Y :

X" Y”
A AL
Equation is separated. It y1e1ds first SLP:
X"—uX=0
SLP
[X]X:(; =0 = u=-1 n=12,..
[X]X:L =0 X, (x)

Then the second equation becomes:
2
— + ﬂ _ﬂ’n

Wthh in its turn is a separated equation:

AL

It yields the second Sturm-Liouville Problem:

Y'-nY =0
SLP
[Y]y:o =0 = n=-v, m=12,.

Equation for separation constants yields:
B+Al=—v, = B=—(A+v])

Then equation for 7 becomes
17
e (l,f +v, )
Which is the 1% order ordinary differential equation:
T'+a(4 +vy)T=0
with the solutions:
T (t) _ e—a(l,ﬁvf,)t

nm

Solution of the Transient Problem: Construct the solution in the form of double infinite series
(eigenfunction expansion):

(xyt) ZZAWX Ye ali )

Where the coefficients 4,, can be found from the initial condition

U(x3,0)=U, (x5)= £ T 4,X,7,

n m

as the Fourier coefficients of the double Generalized Fourier series:

U, (x,y)Xn (x)Ym (y)dxdy

nm |

Se— =
S —y
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Example: DDNN

U (x,4,t)

’u 0w 1du
-t =
o’ oy aot

Initial Condition: u(x, y,()) =u, (x, y)

Boundary Conditions:

t>0

t>0

t>0

t>0

u(x,y,t): (x,y)e (O,L)X(O,M) ,1>0

(Dirichlet)
(Dirichlet)

(Neumann)

(Neumann)

1. Steady State Solution

x=0 [u]X:() =0 yelom
=1 W], =5i() yelom
ou
y=0 |:—} =0 xe(O,L)
W1,
y=M |:6_u} =0 xe(O,L)
W Jyu
Find time-independent solution u(x, y):
2 2
0u, N 0u, _0
o’ oy’
subject to the boundary conditions:
x=0 [uS]X:D:O ye((),M) t>0
x=1L [uS]X:L :ﬁ,(y) ye((),M) t>0
y=0 a”A} =0 xe(0L) >0
oy =0
ou
y=M { } =0 xe(0L) >0
27 N

This is the basic problem for Laplace’s Equation when, three boundary

conditions are non-homogeneous.

Separation of variables:  u, (x, y) =XY

x= [us]x:0=0 = X(0)=0

x=L [us]x:L :ffl(y)
Ou

y=0 — =0 = Y'(0)=0
=] ()
Ou, ,

y=M {—é} =0 = Y(M):O
oy .y

Separated equation:

r__x_

Y X

First, consider equation for Y (two conditions):

Y'—puY =0 u=-x

SLP
Y'(0)=0 = 4,=0 Y, =1

(M)=0 A= 1) =cos(hy) =cos 22
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Then equations for X :
X, =0 = X(,(x):cl+czx

-AX=0 = X, (x)=c,cosh(A,x)+c, sinh(2,x)
Boundary condition at x =0 yields
X,,(O):0=cj+cz-0:01 = ¢ =0
X"(O):0=cl-1+c2-0=c1 = ¢ =0
Then
X, (x) =x
X, (x)= sinh(ﬂxj
M
Construct the steady state solution as
u (x,y) =a,X,Y,+> a,X,Y, =ax+)a, Sinh(ﬂxjcos ﬂyj
n=1 n=1I M M

This solution should satisfy the boundary condition at x = L:

Uy (L,y) =f5 (y) =a,L+ gan Sinh[%LJcos(%yJ
Which is a cosine Fourier series expansion of f;(y) with
M
—MJ;fs ()dy
2 M
a, =—m.[f3 (y)cos[’;/l—ﬁyjdy
Msinh(MLj 0

Then the steady state solution becomes:

u, (x,y)

| fnow]

M
x+z —ﬂjﬁ(y)cos(%y]dy sinh(’;\/[—”xjcos(?v[—ﬁyj
n=! Msmh(M j”

2. Transient Solution

Introduce the transient function as

Ulx, y,1)=ulx, y,t)=u(x,y)

Function U satisfies homogeneous Heat Equation

’U &°'U 18U
+ -
o’ o a ot

with four homogeneous boundary conditions:
x=0 [U]_, =0 velO.M) t>0
x=L [U]_, =0 ye(.M) t>0

xe(O,L) t>0

xe(0,L) >0

and the initial condition:

U(x,2.0)=u,(x,y)-u,(x,y) =U,(x»)
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Solution of the Transient Problem:

Separation of variables U = XYT yields a separated equation

Xy T
X Y aT
with homogeneous boundary conditions:
x=0 [U]X:():O = X(0)=0
x=L [U]_, =0 = X(L)=0
y=0 F—U} ~0 = Y'(0)=0
Oy =0
y=M F_U} ~0 = v(M)=0
oy Y
Solve consequently the Sturm-Liouville problems for X and Y :
X" Y”
— =+
A AL
X"—puX=0
DD
[XL:O:O — n= ﬂnz, ﬁn—%, n=172
[X]FL =0 X, (x)=sin(4,x) =sm(%xj
Then the second equation becomes:
Yﬂ 5
——+pf=u=-4
y FAmu=A
which in its turn is a separated equation:
—=p+A =
=B+,
It yields the second Sturm-Liouville Problem:
Y'—nY =0 n=-v, m=0,1,2,..
, NN
[Y])):O:O = v, =0 Yo(y)zl
- _mx  cos[ ™
[Y]y:M—() v, = I; Ym(y)—cos(M yj

Equation for separation constants yields:
B+ai=n=-v, = B=—(4+v,)
Then equation for 7 becomes

il: (4 +02)

Whlch is the 1* order ordinary differential equation:
T'+a (4 +v, )T =0
with the solutions:

T (t) _ e—a(/l,fw,f,)t

nm

Construct the solution in the form of double infinite series
(eigenfunction expansion):

U(xy.1) = ZAOX,,Y IS WP S i cacl

n=1m=1
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3. Solution of IBVP

Where the coefficients 4  can be found from the initial condition:

nm

U(x,».0)=U,(x.y)= Z@Mﬂ+ZZA4XY

nm* > n-m

n=I1m=1

Uy (52)=| S, [ 1+ 3| S 0, I

m=1| n=1

u(x,y,t) = U(x,y,t)+ us(x,y)

m=1

s mmr mr
+a,x+ Y a_sinh| —x |cos| —
AP [M) (Myj

where coefficients are

2 LM
Ay, W;[ !;[g x y ]sm(T xjdydx
=il lee)a oo 22 i 22
" LM 35 , o M L
1 M
4 =M !f (v )y
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4. Maple Example: heat5dn-2.mws L=2, M=4, a=0)5, f(y)= 1, g(x, y)= x(x—L)+ y(y —M)

2-D Heat Equation = Example DD-NN
>restart;

>with (plots):
>L:=2;M:=4;alpha:=0.5;

L:=2
M:=4
a:=0.5
>f(y) :=1;
fiy):=1
>plot(£f(y) ,y=0..M,axes=boxed) ;
27 Jfunction in non-homogeneous boundary condition
1
] T [u]x:L = f4 ()/)
0 ? 4

>u0 (x,y) :=x* (x-L) *y* (y-M) ;
ul(x, y) =x(x-2)y(y—4)

>plot3d(ul(x,y) ,x=0..L,y=0. .M, axes=boxed) ;

initial temperature distribution

u, (x,y) :x(x—L)+y(y—M)

0O = k) b

Steady State Solution:

>a[0] :=int (£ (y) ,y=0..M)/L/M;

>a[m] :=2/M*int (£ (y) *cos (m*Pi*y/M) ,y=0..M) /sinh (m*Pi*L/M) ;

- 2 sin(m m)

m’ . (mm
mT smh(Tj

>us[m] (x,y) :=a[m] *sinh (m*Pi*x/M) *cos (m*Pi*y/M) :
>us(x,y) :=a[0] *x+sum(us[m] (x,y) ,m=1..2):
>plot3d(us(x,y) ,x=0..L,y=0..M,axes=boxed,projection=0.92) ;

steady state solution

u, (x,y)
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>plot3d({us(x,y),u0(x,y)},x=0..L,y=0. .M, axes=boxed, style=wireframe) ;

initial temperature

distribution u, (x,y)

steady state solution

u, (x,)

Transient Solution:

>U0(x,y) :=ul(x,y)-us(x,y);

U0(x, ) =% (x=2)y (r=4) =5

>A[n,0] :=2*int (int (U0 (x,y) ,y=0..M) *sin(n*Pi*x/L) ,x=0..L) /L/M:
>A[n,m] :=4*int (int (U0 (x,y) *cos (m*Pi*y/M) ,y=0..M) *sin (n*Pi*x/L) ,x=0..L) /L/M:
>U[n,0] (x,y,t):=A[n,0]*sin(n*Pi*x/L) *exp (-n*2/L*2*Pi*2*t*alpha) :

>U[n,m] (x,y,t):=A[n,m] *sin (n*Pi*x/L) *cos (m*Pi*y/M) *exp (-
(m*~2/M*2+n*2/L*2) *Pi*2*t*alpha) :

>

U(x,y,t) :=sum(U[n,0] (x,y,t) ,n=1..10)+sum(sum(U[n,m] (x,y,t) ,m=1..10) ,n=1..10):

>U(x,y,0) :=subs (t=0,U(x,y,t)) :
Solution of IBVP:

>u(x,y,t) :=us(x,y)+U(x,y,t):
>u(x,y,0) :=subs(t=0,u(x,y,t)):

>animate3d(u(x,y,t) ,x=0..L,y=0..M,t=0..3,frames=100,axes=boxed) ;
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THE HEAT EQUATION 3-D Cartesian Coordinates ‘&
(x.2.2.1) Z%+gyif ziﬁF(xy z) = é%’: (x,,2)€(0,L)x(0,M)x(0,K) = R®, >0
[u]s =y t>0
[uls=7
[u]’:{’: U, (%,,2) t=0 (x.y.2)e[0.L]x[0.M]x[0,.K] =R’

u(x,y,2,t) = u,(x,y.z) + U(x,y.2,1)

U (x,y,z)/ N(x,y,z,t)

STEADY STATE PROBLEM - PELE TRANSIENT PROBLEM (basic)
ou, 0u, 0u U U U 1aU
ss 4 ss 4 s 4 F Y, =0 - =
o’ oy’ o (x3.2) ox? " o’ * o7 a ot
Laplace Eqn six basic Poisson Eqn
Vu=0 problems Vu+F=0
[u,]s =/ 0 u, fi 0! u, 0 [U];=0 [U],:,,, = Uy Tl
supplemental eigenvalue problems SEPARATION OF VARIABLES
2 ’
X"=puX X! =-A2 X, U(x,y,2.1) = ®(x,9,2) T(1) Vo 1T _4
sLp [ aTl
[X]x=n =0 = Hy =_Z'"2
[x]_, =0 X, (x) HELMHOLTZ EQUATION
2 1 T' —
Y'=ny Yy =-v}Y, Vie=po ar’
SLP 2
O S (53:2)= X (Y ()7(:)
D(x,y,z)=X(x)Y(y)Z(z
(Y], =0 Y, (»)
Z” Z Zﬂ 2 Z ﬂ/” ’ Vm ’ a)k
=7 =—w _ 2,2 2
» k k X,, , Ym , Zk T=e a(lﬂ +v,, +@y )1
[Z]z:():() = yk:_wi (12 2 2)
=—(Al+v)+
[2]., =0 Z.(2) B n TV T 0O
STEADY STATE SOLUTION (PELE) TRANSIENT SOLUTION
U (x,y,z) = U tu,t. +ZZZA,VM X, Y,Z,
T U(ry.2d) = LT, B 1,2, &V
KML n m
[[F(xy.2)X,Y, 2, dcdydz '
where A = ;’ ud P P 5 B B KML
(ﬂ‘n *Verwk) 107 1207 12| J.J.J.(u,,fux)X”YmZ,‘ dxdydz
_00o0
where B,.= ~ P 2
u, (x,y.z) = solution of six basic problems for Laplace's Equation H X, Y, H Z, H
plus solution of Poisson's equation with zero b.c.'s
THE SOLUTION OF THE IBVP is a superposition of steady-state and transient solutions
u(x,y,z,t) = ug (x,y,z) + U(x,y,z,t)
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VIIL.3.2.2 3-D TRANSIENT PROBLEM. HELMHOLTZ EQUATION.

all boundary conditions

are homogeneous

y [U]III or I _0

initial condition:

[U],:o =U,(x.y.z)

Helmholt; Equation

Consider transient problem from the solution of the 3-D Heat Equation

o’U o'U U 16U
+ + =——
o’ o o a ot

(x,y,z)e(O,L)x(O,M)x(O,K) >0

Separation of variables:
U(x,y.zt)=@(x,y,z)T (1)
Separated equation:

oo o oD

+ +
o’ oy’ o 1T
D aT

Separated equation yields the Helmholtz Equation:

V®o=pD

which constitutes the eigenvalue problem for differential operator V~.
The solution of the Helmholtz Equation subject to boundary conditions
can be easily obtained by the eigenfunction expansion method.

Assume
O (5.2)= X (1)1 ()2(2)
Substitute into the Helmholtz Equation

V(XYZ)= X"YZ+ XY'Z + XYZ" = BXYZ
Divide by XYZ

Separation of variables in the boundary conditions yields:

x=0 [@] ,=[X(0)]¥(»)2(z)=0 = [X]_, =0
x=L (@], _[X )Y (y = [x]_, =0
y=0 (2], =x()[¥(0)]z(z)=0 = [r] =

y=M (@], () ¥Y(M)]z(z)=0 = [¥],., =0
z=0 [®] , = ( )Y(»)[z(0)]=0 = [z]., =0
z=K (2] =X(x)Y()[Z(K)]=0 =  [Z]_, =0

Note, that we have complete pairs of homogeneous boundary
conditions for X, Y and Z .

Solve consequently the Sturm-Liouville problems for X, Y, and Z :
X!/ YII ZII

Xy
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Supplemental Eigenvalue problems

Solution of Basic IBVP:

The first Sturm-Liouville Problem:

X'—uX =0

SLP
[X], =0 =  u=-i  n=(0).12..
[X]X:L = 0 Xn (x)

Then the equation becomes:
Yﬂ Z"

—_—— =-1
Y 7 B=u=
which in its turn is a separated equation:
Y/I ZI/
= 4B+ A=
A AL

It yields the second Sturm-Liouville Problem:

Y -nY =0

SLP
Y], =0 — ==  m=(0).12..
[Y]}::M = 0 Ym (y)

Then one more step produces equation

B+ A =
R
which also can be separated
z" ! 3
=B+ +v. =
— = F =y

It yields the third Sturm-Liouville Problem:

Z"—yZ =0

SLP
[7].., =0 = =0 k=(0),1,2,..
(2] =0 Z,(2)

Then the second part of the last equation becomes
B+A+v. =—o;

and the constant of separation is

_ 2 2 2
ﬂnmk - _(ﬂ’n +Vm +a)k )

Then the solution of the Basic IBVP for the Heat Equation is:

U(50,220)= ST T By (5)1, ()2 (2)e 4

n m

where the coefficients B, , can be found from the initial condition
as the Fourier coefficients of the triple Generalized Fourier Series:

S e— X
S

j'U(, (x.y.2) (x)Ym (»)Z, () dxdydz

B nmk |
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VIIL3.3.

HEAT EQUATION IN CYLINDRICAL COORDINATES

ou Ou

VIIL.3.3.1 LONG SOLID CYLINDER long solid cylinder with angular symmetry: —=—-=

1) Separation of variables:

2) Sturm-Liouville Problem:

See VII.12, p.509

3) Equation for T :

4) Solution:

BASIC CASE

oz 00

Homogeneous Equation and Boundary Conditions

u 1ou 1éu
-t =
o’ ror adt

Initial condition:

Boundary conditions:

u(r,t): refor), >0
u(r,0)=u,(r)

u(0,t) < t>0 bounded

[u] =0 t>0 (I 1 or I kind)

RIR 1T
R rR aT H
R IR
R rR H

r2R”+rR+[ﬂzl”2 —02]R =0

u, == n=12,.
J, (/1,,1”1 ) =0
R, (r)=J,(4,r)

p(r):r
T'—aqul =0
T'+al’T=0

u (r, t) bounded =

[R(r)]T(r)=0 =

separate variables in the equation

Bessel Equation of 0" order
are positive roots of
characteristic equation

Eigenfunctions

R, (r) "i = ]I'J{f (/Inr)rdr = (1*12/2)]12 (/1nr1) norm
0

weight function:

Initial condition

where
n=1 n=1
. jua (r)Jo (inr)rdr
u(r,0)=u,(r)=2a,Jy(4r) = a,="—
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GENERAL CASE:

I Steady State Solution

Non-Homogeneous Equation, Non-Homogeneous Boundary Conditions

2

Z%+£Z—Z+F(r)zéaa—? u(x,t): re(O,rI), t>0
Initial condition: u (r, 0) =u, (r)

Boundary conditions: u(rit)<o t>0  bounded

[ul_ =f t>0 (I I orllird kind)

II Transient Solution:

Time-independent solution  u (r)

Substitution of a time-independent function into the heat equation leads
to the following ordinary differential equation:

o’u, 10u
S+——+F(r)=0 u(r), re(0,r
e L0 (r) ). re(on)
subject to the boundary conditions of the same kind as for PDE:
[v,]._, t>0  bounded

[uY ]r:r =/, t>0 (L, I or IlIrd kind)

General solution of ODE:
19 r% + F(r) =0
ror\ or

9 r% :—rF(r)

or\ or

0 1
% = 7[[—rF(r)}dr+c—r’

" (r):.[{éj[—rF(r)}dr}dr—i-c, nrte,

For bounded solution, it is necessarily ¢, =0, therefore the general
steady state solution in circular domain is

()= [{ ] (e

Solutions of BVPs for circular domain with uniform heat generation are
provided by the Table.

Define the transient solution by equation:
U(r,t) = u(r,t)—us (r)

then solution of the original problem is a sum of transient solution and
steady state solution:

u(r.t)=U(r.t)+u,(r)




Chapter VIII PDE

VIIL.3 Transient Initial-Boundary Value Problems November 4, 2023

647

Solution for U(r,t)

IITI Solution of IBVP:

Substitute it into the Heat Equation:

2 2
8U+18U+6 u5+16uS+F(r)_iaU

o ror o ror Ta o
2

Since 24 4 LM g (x)=0, ityields
or ror

62U+18U_iaU

or’ 75_ a?

We obtained the equation for the new unknown function U (r,t) which

has homogeneous boundary condition:

r=r U], =[], ~u]., = fi-f=0

As a result, we reduced the non-homogeneous problem to a
homogeneous equation for U (r, t) with homogeneous boundary

conditions. Initial condition for function U (r,z):
U(r,O) = u(r,O)—uS (r) =u, (r)—uS (r)
We consider the following BASIC initial boundary value problem:

U 10U _ 13U

= n S U(r). re(0n). >0

initial condition: U(r,O) =u, (r) —u, (r)
boundary conditions: U (O,t) < t>0
[U],_ =0 t>0

We already know a solution of this basic problem obtained by
separation of variables:

U(X,t) = iaanT; = ian‘]() (lnr)e—alfz
n=1 n=1

where coefficients a, are the Fourier coefficients determined by

the corresponding initial condition for the function U(x,z):

Lo ()=, )8, o L), ()],
;[Rf (r)rdr ]Jj (ﬂnr)rdr

0

a

n

Solution of the original IBVP is a sum of steady state solution and
transient solution:

u(r,t) =u, (r)+U(r,t)
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VIIL.3.3.2 HOLLOW CYLINDER BASIC CASE: Homogeneous Equation and Boundary Conditions

o’ 10 10
6_;;+;6_l::;6_1: u(x,t): re(0,r1), t>0
Initial condition: u (r, 0) =u, (r)

Boundary conditions: [u] =0 >0 (I Il orllrd kind)
[u]r:r =0 >0 (I llorlllrd kind)

1) Separation of variables: u(r,t)=R(x)T (1)
[u]w] :[R]r:n T(1)=0 = [R]r:’l =
[u]V:l :[R]V:l‘j T(t)zo j [R]IZVZ =
RIR 1T
R rR ar “
2) Sturm-Liouville Problem: %+i% =u (u=-1> SLP)
r

P’R"+rR+ [ﬂzrz -0’ ] R=0 Bessel Equation of 0 order

Eigenvalues: u,==A  n=12,..

A, are roots of characteristic eqn

Eigenfunctions: R, (r)=c¢,,J,(A,r)+c,,Y, (A7)
3) Equation for T : T'—aul =0
T'+al.T=0 = T, (t)=ef‘u’ft
4) Solution: u (r,t) - iaanTn _ iaan (r)efaijt
n=1 n=1
B Jl.uo (r)R, (r)rdr
Initial condition: u(r,0)=u,(r)=>a,R, = a,=" .
n=1
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GENERAL CASE: Non-Homogeneous Equation, Non-Homogeneous Boundary Conditions
o’u 10u 1 Ou
—t—+ F(r)=—— ulx,t): re(Or), t>0
o’ ror (r) a ot (x.1) (0.17)

Initial condition: u (r, 0) =u, (r)

Boundary conditions: [u] =1 t>0 (I Ilorllrd kind)
[u]r:r =f, t>0 (I Iorllrd kind)

I_Steady State Solution Time-independent solution  u, (r)

Substitution of a time-independent function into the heat equation leads
to the following ordinary differential equation:

o’u, 10u,
+ —

o’ r or

+F(r):0 us(r), re((),rl)

subject to the boundary conditions of the same kind as for PDE:

[ux ],:r =/, t>0 (I, I or Illrd kind)
[us ]’_:r =1, t>0 (Z, I or Ilrd kind)

General solution of ODE:

u, (r) = J.{éj[—rF(r)]dr r+c,Inr+c,

Coefficients ¢,,c, have to be determined from boundary conditions.

II Transient Solution: Define the transient solution by equation:
U(r,t):u(r,t)—us(r), u(r,t):U(r,t)+uS(r)

Substitution into the Heat Equation yields an equation for transient
solution:

QU 10U 10U
o’ ror adt

for the new unknown function U (r,t) which has two homogeneous

boundary conditions:

r=r (U], =lul_ —lu]_, =fi-fi=0
r=n U] =[] ] =fi-f2=0

and initial condition:

U(r,O) :u(r,O)—uS (r) =u, (r)—uS (r)
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Solution for U(r,)

III_Solution of IBVP:

We consider the following BASIC initial boundary value problem:

OV 18U _ 13U

arz ;E—ag U(r,t), r€(0,r1),t>0

initial condition: U(r,O) =u, (r)—us (r)
boundary conditions: [U ]r:r =0 t>0
[U ]r:r =0 t>0

We already know a solution of this basic problem obtained by
separation of variables:

where coefficients a, are the Fourier coefficients determined by

the corresponding initial condition for the function U (x, t):

n

..‘[”0 (r)-u, (’”)]R,, (r)rdr

0

anz

jRj (r)rdr
0

Solution of the original IBVP is a sum of steady state solution and
transient solution:

u(r,t) =u, (r)+U(r,t)
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VIIL.3.3.4 HEAT EQUATION in Cylindrical Coordinates:
2 2 2
u(r,0,z,t) 5_124+£3_u+i26_ts+8_124+£=16_u
or" ror r°o0° 0z k acdot
2 2
1) Long cylinder (@=0); 6_124+£6_u+i2 0 l; +§=i8_u
0z o’ ror r o k aot
u(r,0,1)
Ou u lou 'u g 1 0ou
2) Short cylinder with angular symme —=0]: A R - B tad
) g Ui symmetry (89 J o’ ror o7 k adt

u(r,z.t)

7

7

2 2
3) Cylindrical surface of fixed radius 7, (Z_u = 0) : ! 0 Ou g_10u
r

i +— = -
¥ oe ok aot

Thin-wall cylindrical pipe

u(r,zt)
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THE HEAT EQUATION Cylindrical Coordinates
5 1 ou
v u+F(r,9,z) =——
a ot
[u],=f solid cylinder
[uly =7 (r.0.z)e[0.1,)x[-7.7]x(0,.L) = R’
t>0
[u],:,,, ) hollow cylinder
(r.0.z)e(r,. 1) x[-7.7]x(0.L) = R’
[u]s =71
u(r,H,Z,t) =u, (r,9,2)+ U(V,H,z,t)
U(V,H,z,t)
STEADY STATE PROBLEM - PE TRANSIENT PROBLEM - HE
V2u+F(r,t9,z)=0 VZU:ial
o Ot
Ul. =0
)= f l;
U], =uy—u,=U,(r.0,2)
supplemental eigenvalue problems SEPARATION OF VARIABLES
Q" = —n’0 _
0"=no sp == n=0.1.2,. U(rﬂ,z,t) = (D(r,@,z) T(t)
=
6(6+27)=6(0) =0 6,(0)=I
1=t @, (6)=a, cos(n)+5, sin(n0) HELMHOLTZ EQUATION
> Vo 17
2 2 — —_——=
R”iR'*nszwR Rl +2R, "R, =-22R 2 7 ar ?
r r r r
R(0)<o0 sap Hm =P
_ — CD(V,Q,Z):R(V)@(H)Z(Z)
R(r,)—O 2 pn ’ 292 2 _
R +1R +(r A =10 )R”m =0
R (r)=d, (2, r n=0,12,.. _ 2 2 7= 7(1(1;”&(4)‘2)/
()=dfur) OO B =~ (A + ) e
Z"=yZ Z]=-w;, Z,
[Z]Z,,,:o Sng 7’/{:7‘”: an’ @n’ Zk
[2]..c =0 Z(2)
TRANSIENT SOLUTION
U(r,@,z,t) = (D(V,H,Z)T(t)
see p.654 for the case of solid cylinder, and
Pp-658 for the case of hollow cylinder
SOLUTION OF IBVP

u(r,@,z,t) = us(rﬂ,z) + U(r,@,z,t)
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VIIL.3.3.5

all boundary conditions

are homogeneous

[U] 1,11, or 111 — 0

S

initial condition:

U(r.0,z,t=0) = U,(r.0,z)

Helmholt; Equation

boundary conditions

bounded solution

27 -periodic solution

BASIC IBVP FOR HEAT EQUATION IN FINITE SOLID CYLINDER 3-D

Consider the Basic IBVP for the 3-D Heat Equation:

o’U  1oU

10U o°U 10U
or? Jrr or

+ + =
067 0z a ot

(r.0.z)e[0,r,)x[0,27x]x(0.L) , t>0
(r.0.2)€[0.7)x [~z 2] (0.L)
Separation of variables:
U(r,0,z,1)=®(r,0,z)T (1)

Separated equation:

10’0 o’@

o0 o 1T _ g
)] aT

oo 100
J’_fi
o’ r or

Separated equation yields the Helmholtz Equation:

=7 V'® = pd

The solution of the Helmholtz Equation subject to boundary conditions
can be obtained by the eigenfunction expansion method.

Assume
®(r.0.z)=R(r)0(0)Z(z)

Substitute into the Helmholtz Equation

R" IR 16" 7
— +—=

R R ez P

Separation of variables in the boundary conditions yields:

r=r (2], =[R(n)]0(0)2(:)=0 = [R]_ =
z=0 (2], =r(NO(O)[2(0)]=0 = [7] =0
z=L (2] =r(NGO)2(K)]=0 =  [2]_ =0
From physical consideration, we need

r=0 [@] ,=[R(0)]0(0)Z(z)<> = [R] _, <

@(r,49+27z,z):d7(r,6’+27r,z) =
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Separate variables

1% equation

2" equation

" R" R z"
2 2 2
—_—=7 —-r —V——r —=

o P

R R Z i

0"-nO=0

that is the SLP without boundary conditions, with condition of
periodicity @(0+27)=O(6) (see also the section VIIL3.6).

It can be considered in the interval —z < @ < & with the condition
O(-x)=0(x)

The case 17 =0 yields the linear solution

0,=c0+c,

The only periodic linear function is a constant function, therefore,
0,=1

can be taken as an eigenfunction corresponding to 77, =0.

For positive eigenvalues, the separation constant has to be 7 = -z,

then the general solution is

0, =c, cos ub +c, sin ud

A function with a period 7 = 2 is also a 27 -periodic. Therefore,
n

for 27 —periodic solution, the frequency x can be any positive integer

2r 2rx
= =—n=
T 2z
So, for 17, =—n’, the corresponding eigenfunctions are

0, =c,cosnd+c, sinnd

That is consistent with the standard Fourier series over symmetric 27 -

interval (=7, ) , which is based on the complete set of mutually

orthogonal functions:
{1, cos(n@), sin(n@)}

Therefore, solution of the first equation can be summarized as:

m,=0 0, (0)=1

n,=-n 0,(0)=a, cos(nb)+b,sin(nf) n=12,..

rzﬂ_r —_——y— 7y —=—n n:0,1,2,...
R R Z
R" IR Z"
- I 7 B2 separate variables
R rR p VA a P

R . .
= t————=u consider equation for R
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3" equation

P"R"+rR'—n’R—ur’R=10

That is the Sturm-Liouville problem for Bessel Equation of order »

2
rZR"+rR'+[(—y)r2 —nz]R =0 (rR')' +{1+(—#)F}R =0
r
p==x
¥’R"+ R + [,Vr? - nZ]R =0 (see sectionVIL12, p.507)
[R]r:() <o
[R].., =0
R, (r) =c,,J, (lr) +c,,Y, (lr) general solution
[R], , <> = ¢, =0

R, (r)=c,,J,(Ar)

[R]r:r =0 = [Jn (ﬂ'r/ ):| =0 = ﬂ’mn n= 0’ 1) 2)
m=(0),1,2,..

R, (r)=c,,J,(Ar)

[J,(An)]=0 = 4, n=012,..
m=(0),1,2,...

n comes from the order of the Bessel functions J, (/lr) .

Eigenvalues 4, should be found for each n=0,1,2,...

Zﬂ

-
ﬂ Z mn
~Z =1 +B=y combine constants to a single parameter y
Z"-yZ=0

SLP

[Z]z:{) =0 = ;/:—a),f k:(O),I,Z,...
[Z] . =0 Z(2) eigenfunctions

Then the second part of the last equation becomes
A + ==,

and the constant of separation is

_ 2 2
ﬂmnk - _(ﬂ’mn +a)k)
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—a(l,fm +of )t

Solution for T'(1) T.(1) =e

The solution of the Basic IBVP for the Heat Equation is:

U(r.0.2.) =33 At s (4ur) Zi (2)e el ZZZ[Anmk cos(n0)+ B, sin(nb) ]J ) Zi (z)efa(’l"z'”m"z)t
m k

n=1 m

The coefficients in this solution should be found to satisfy the initial condition:
U(r,H,z,O) =U, (r,@,z)

Uy (1:0.2)= Z 3 Al () 24 (25| £ 2 (210, () co5(00) s 3| 55 B (21, () [sin(n0)

n=I m n=1_ m

The following cascade of expansions over the eigenfunctions yields equations for calculation of coefficients.
First, they are calculated as the coefficients of the standard Fourier series over interval (—7;, 7r) :

1 +
z zAﬂmek (Z) Jo(%m/’) ZZJ‘UO(V,H,Z) do

m

Z Z i Zi (2) [ (A?) ZéTUO(F,H,z) cos(n@)dﬁ

m

Z Z i Zi (2) [ (A?) =éTU0(r,I9,Z) sin(n@)d&

m

Second, as the coefficients of expansion into Fourier-Bessel series:

ZA()mek (Z)
k

+x 1

U 0, dr d6
271-",] Om " :U: r, z )r r

( " T].UO (r.0,2)J,(A,,r) cos(n8)rdrdo
n -z 0

] +7 1

Z 2 (2) = HU (r,0,2)J,(A,,r) sin(nd)rdr do

n( n -z 0

Z nmk ()

and, finally, by expansion into Generalized Fourier series, the coefficients for solution of the Basic IBVP are defined

L+rr

ZJJI (r‘é’z) o (A7) Z ( )le’de dz

= 2
TR HEAGTREL
L+rn

Fleec !U‘““ (2u) 2, (2) cos(ut)rar a0

L+rr

U o, in(n@)rdr do d.
T r" "Z J)‘J;;l: r,0,z)J, (4,,r) Z,(z) sin(n6)rdr Iz

nm

Ay

nmk

/1 r

nm

nmk

I
)
I
)
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VIIL3.3.6 BASIC IBVP FOR HEAT EQUATION IN FINITE HOLLOW CYLINDER 3-D

Consider the Helmholtz equation which appears in the separation of
. all boundary conditions variables in the Basic IBVP for the 3-D Heat Equation:

are homogeneous
2 2 2

[U]SI'”' m_ 6(2J+16U+126({+6(2J:I(3U
or ror r° oo Oz a ot

(r.0,2) € (r,1,)x[0.22]x(0,L) . >0
(r.0.z) e(r.n)x[-7.z]x(0.L)
Separation of variables:
U(r,0.z.t)=@(r.0,2)T (1)

Separated equation:

r oe 10w 1P OO

initial condition: or’ _r or r’ 06’ oz’ — iﬂ

=p
U(r,0,2t=0) = U,(r,0,2) ® aTl

Separated equation yields the Helmholtz Equation:

Helmholtz; Equation =pf Vo = p

The solution of the Helmholtz Equation subject to boundary conditions
can be obtained by the eigenfunction expansion method.

Assume
®(r.0.2)=R(r)0(0)Z(z)

Substitute into the Helmholtz Equation

ROIR 162
R rR O Z
boundary conditions Separation of variables in the boundary conditions yields:
r=r (2], =[R(r)]0(0)2(2)=0 = [R]_, =0
r=n (2], =[R(r)]0(0)2(z)=0 =  [R]_, =0
z=0 (2], =R(O(O)[2(0)]=0 =  [7]_,=0
z=1L (2] =R(OO) 2(K)]=0 =  [7]_ =0

From physical consideration, we need

27 -periodic solution @(r,@—i— 27[,2) =@ (r,6’+ 27[,2) = @(9+ 27[) = @(0)
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Separate variables

1% equation

2" equation

" R" R z"
2 2 2
—_—=7 —-r —V——r —=

o P

R R Z i

0"-nO=0

that is the SLP without boundary conditions, with condition of
periodicity @(0+27)=O(6) (see also the section VIIL3.6).

It can be considered in the interval —z < @ < 7 with the condition
O(-x)=0(x)

The case 17 =0 yields the linear solution

0,=c0+c,

The only periodic linear function is a constant function, therefore,
0,=1

can be taken as an eigenfunction corresponding to 77, =0.

For positive eigenvalues, the separation constant has to be 7= -z,

then the general solution is

0, =c, cos ub +c, sin ud

A function with a period 7 = 2 isalso a 27 -periodic. Therefore,
n

for 27 —periodic solution, the frequency x can be any positive integer

2r 2rx
= =—n=
T 2z
So, for 17, =—n, the corresponding eigenfunctions are

0, =c,cosnd+c, sinnd

That is consistent with the standard Fourier series over symmetric 27 -

interval (=7, ) , which is based on the complete set of mutually

orthogonal functions:
{1, cos(n@), sin(n@)}

Therefore, solution of the first equation can be summarized as:

m,=0 0, (0)=1

n,=-n 0,(0)=a, cos(nb)+b,sin(nf) n=12,..

rzﬂ_r —_——y— 7y —=—n n:0,1,2,...
R R Z
R" IR Z"
- I 7 B2 separate variables
R rR p VA a P

R . .
= t————=u consider equation for R



660 Chapter VIII PDE VIIL.3 Transient Initial-Boundary Value Problems November 4, 2023

P"R"+rR'—n’R—ur’R=10

That is the Sturm-Liouville problem for Bessel Equation of order »

2

rZR"+rR'+[(—y)r2 —nz]R =0 (rR')' +{1+(—#)F}R =0

r
p==
#R"+rR' + [/Vrz - nZ]R =0 (see sectionVIL 12, p.515)
[R]r:r = 0
[R]r:r,, = 0
R, (r) =c,,J, (lr) +c,,Y, (/1}*) general solution

See solution of the Sturm-Liouville problem for the Bessel equation in
the annular domain (Section VII.12, p.515):
For each n=0,1,2,..., there infinitely many eigenvalues 4, and

corresponding eigenfunctions (orthogonal w.r.t weight p(r) =r)

an (l") = cI,an (ﬂ’ r)+01,nY (ﬂ l")

nm n nm

[characteristic eqn]=0 = Ao n=0,12,..
m=(0),1,2,...

n comes from the order of the Bessel functions J|, (/lr) and Y, (/lr) .
Eigenvalues 4, should be found for each n=0,1,2,...

The square of the norm of eigenfunctions is denoted as ||an (r)"2

Z”
3 equation L- A A

z" . .
— " A +B=y combine constants to a single parameter y

Z"—-yZ =0

SLP
(7], =0 e k=(0),1,2,..
[Z]Z:K =0 Z.(2) eigenfunctions

Then the second part of the last equation becomes

A+ B=—w]

‘mn

and the constant of separation is

_ 2 2
ﬂmnk - _(ﬂ’mn + y )
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—a(l,fm +of )t

Solution for T'(1) T.(1) =e

The solution of the Basic IBVP for the Heat Equation is: R, (r)=J, (l,,mr)

U(r.0.zt)= ZZ ot Row (1) Z (Z)e ey ZZ[Anmk cos(n6)+B,,, sin(nﬁ)]an (Am?)Z, (z)e_a(l'f”mf)t

=1

The coefficients in this solution should be found to satisfy the initial condition:
U(r,H,Z,O) =U, (r,@,z)

Uy(r0.2) = 5 A Ren ()2 )+Z{ZZAWZ B nm(/inmr)}cos(ne) z{zz 7R, (4 r)}m(na)

n=I1[ m n=1 m

The following cascade of expansions over the eigenfunctions yields equations for calculation of coefficients.
First, they are calculated as the coefficients of the standard Fourier series over interval (—7;, 7z) :

m

Z Z omk ()} 0,,1(/10,,17‘) :%TUO(I",Q,Z) do
S|S0 0)| R ) =L [0, 02)costao) o

m

z z ik ( )} ,,m(/l r =éTU(,(r,6’,z)sin(n9)dt9

m

Second, as the coefficients of expansion into Fourier-Bessel series:

2 AmZ:(2)

+x

IIU (r.0.2) R,,, (A7) rdrd6

27z||R0m o )| 220

Z i Zi (2) T]LU r6,z) R, )cos(n@)rdrd@
(ﬂnm) "o

Z i Zi (2) = anzﬂnm " iJ:[U I’G R, (4, )sin(nﬁ)rdrd@

and, finally, by expansion into Generalized Fourier series, the coefficients for solution of the Basic IBVP are defined

L+rn
U 0, dr do d.
R TRV A M r:0.2) R (ur) Z2(2) rardt

L+nn

A = III o (A?) Z, (2) cos(n®)rdrdf dz

nmk -
T an ! " "Z 0-70

Ay

L+rn
B = U 0,z in(n)rdrdb d.
nmk R (/Inmr)”Z ||Zk( _([_[[_{!‘ 7 ) ( ) Sln(n )7" 4 &
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VIIL.3.4 SOLID SPHERE

Consider heat conduction in the sphere with angular symmetry:
ou_ou_,

o4 00

he non-stationary temperature field u(r, t) depends only on the radial
variable  and time variable .

Initial-boundary value problem:

1 i(rz a“j+q(r) _1ou

2ol o) k aot

re[O,rI) t>0

initial condition:

u(r,0)=u0(r) re[O,rI]

boundary conditions:

el =h(uw—u_ ) >0
ar . r=r
uev,t) :
u_, <o t>0

where u_ is the ambient temperature and / is a convective coefficient.
- ,,, Rewrite the boundary condition in the standard form

ou h hu,,
—t—u =
or k . k

1) Superposition of Steady State and Transient Solutions:

-

u(r,t) =u, (r)+U(r,t)

2) Steady State Solution:

L) i),

. or or k
boundary conditions:

ou, h hu
=+ —u, == t>0
or k "]._ k

1

0 t>0

General solution:

(71 q(r | c
u (r) = —J. _r_z'[_gc ) rzdr_dr —7’+ c,
For the solid sphere (bounded solution at 7 =0 ):
u, (r) = —I _rizj.—q E:) rzdr_dr +c,

For uniform heat generation ( ¢ = const ):

u(r) =

%(rf —r2)+%+uw
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Reduction to Cartesian coordinates

3) Transient Solution:

zg(zaUJ_iaU relon) 150

L P
r’ or or a Ot

initial condition:

U(r,O):uO(r)—uS(r) re[O,rI]
boundary conditions:
{a—U+ﬁU} =0 t>0
or k ror,
U|_, <x >0

Introduce the new dependent variable (reduction to Cartesian case):

V(r,t) =r U(r,t)

Write U ==V
r
Evaluate Lh.s. QU = _izVJrliV
r r ror
P2y v ly
or or
2
Irly 2y Oy, =V
or or or r or
2
izﬁ( 2 QUJ - la—ZV
e or or ror
Evaluate r.h.s. ia—U = iia_V
a ot ar ot
2
Into equation: _6_2V = Liov
ror ar Ot
Gl _1ov
or’ a ot

which formally is the 1-d Heat Equation for » in the finite interval

r€[0,r,), which requires two boundary conditions.

The first condition at » =0 is obtained directly from the equation

used for a change of variable:

v|_,=rU

=0 Dirichlet

r=0
Consider the second boundary condition at 7 =7, :

I:a_U+ﬁU:| =0
or k |_

{8V hV}
orr kr].
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=0

L r Or Pk

la_VJrl(ﬁ_i]V ~0
\ror r\k r e

a_V+ ﬁ_i Vv =0
Lor \(k n s

=n

10V V hV}
+

a—V+HV} =0 Hzﬁ—i Robin
| or . k

1

Initial-boundary value problem:

v _1or
o’ a ot

V(V,o)ZFU(”:O):’”[MU(”)_% (r)}

v|_,=ru|l_, =0 D
[a—V + HV} =0 H= L R
or ror, k r

4) Sturm-Liouville Problem corresponding to the case of Dirichlet-
Robin boundary conditions (table SLP):

Eigenvalues A, are the positive roots of the equation:
Acos Ar,+ H sin Ar, =0
Eigenfunctions X, =sinAr

I sin(22,r,)
2 42

n

X,

Solution (see Example 2, p.?):

V(rt) = icn sin(/?,nr)efaﬂ”zt

n=1

]Lr[uo (r)=u, (r)]sin(A,r)dr

0

n 2

B¢

5) Solution:

u(r.t)=u,(r) + éV(r,t)
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6) Example (turkey-3.mws) Roasting of a turkey

The turkey (W =15 Ib) is assumed to be a sphere with the uniform initial temperature
u, =10°C . Itis exposed to the convective environment at u, = /50°C with the convective

coefficient A= 10

i The turkey is considered to be done when its minimum temperature
m
reaches u,,  =75°C (Standard for California). Thermophysical properties of turkey meat used

for calculation are from the Table (Section VIII.1.15, p.580).

> restart;with(plots):

>alpha:=0.13e-6;rho:=1050;cp:=3540;k:=0.5;

a:=0.1310°
p:=1050
cp = 3540
k=05
>h:=10;
h=10
>qgdot:=0.0;
gdot := 0.
>W:=15.0;VOL:=W/rho;rl:=fsolve (4/3*Pi*r~3=VOL,r=0..1) ;
W :=15.0

VOL :=0.01428571429
rl :=0.1505235493

>H[2]:=h/k-1/r1;
H2 = 13.35652126

Specified Temperatures:
>uinf:=150;ud:=75;
uinf:= 150
ud =175
>u0:=10;
u0 =10

Steady State Solution:
>us:=qdot* (rl*2-r) /6/k+qdot*rl/3/h+uinf;
us == 150.

Transient Solution:
characteristic equation:
> w(x) :=x*cos (x*rl)+H[2] *sin (x*rl) ;

w(x) = x c0s(0.1505235493 x) + 13.35652126 sin(0.1505235493 x)

> plot(w(x) ,x=0..50);

Eigenvalues:

> n:=1: for m from 1 to 20 do y:=fsolve(w(x)=0,x=10*m..10* (m+1l)): if type(y,float)
then lambda[n]:=y: n:=n+l fi od:
> for i to 4 do lambda[i] od;

15.22059059

33.80636804
53.79455908
74.23157321

> N:=n-1;
N:=10
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Eigenfunctions:
> X[n] :=sin(lambda[n] *r) ;
X =sin( 1)

> NX2[n]:=rl/2-sin(2*lambda[n]*rl)/4/lambda[n];
1 sin(0.3010470986 7»”)

NX2 :=0.07526177465 — 2 %

n

> c[n] :=int (r* (u0-us) *X[n] ,r=0..rl) /NX2[n];

> u(r,t) :=us+(1l/r) *sum(c[n] *X[n] *exp (-alpha*lambda[n]*2*t) ,n=1..N) ;

u(r, 1) == 150. + (~14.93682091 sin( 1522059059 ) e’ 7000130

+4.270369272 sin(33.80636804 1) e T OO0

— 1.825389731 sin(53.79455908 r) e o 010030

1+ 0.9848499073 sin(74.23157321 r) e’ 0 IEHEP 0

—0.6104851654 sin(94.84937974 r) e
+0.4138908063 sin(115.5555678 r) e

(=0.001169532629 )

(~0.001735901602 1)

—0.2985392385 sin( 136.3110699 r)e oY

+0.2252900588 sin( 157.0967601 r) e
—0.1759525722 sin(177.9022284 r) e

+0.1411724164 sin(198.7213411 r) e 0 P7EE 0y,

(—0.003208320964 )

(~0.004114396373 1)

Solution:

Symmetric Extension:

u2(r,t) :=subs(r=-r,u(r,t)):

t1:=0.5*%60*%10:t2:=3*60*60:t2:=5*60*60:t3:=7*60*60:t4:=9*60*60:

zl:=subs (t=tl,u2(r,t)) :z2:=subs(t=t2,u2(r,t)) :z3:=subs (t=t3,u2(r,t)) :z4:=subs (t=t4,u2(r,t)):
plot({u0,us,ud,zl,z2,23,z4},r=-rl..rl,color=black,axes=boxed) ;

VVVYV

140

1204 ¢
1004 u(r, ) t=5 min

t =9 hours

a0
B0
404

209, ¥

015 01 005 0 005 01 015
r

Temperature at the center:
> uc:=limit(u2(r,t),r=0);

ue == 150. — 227.3472358 ¢ *WVNOBFO L 35 39733830 ¢! MO

+ 1443656753 e(70.0001485731676 t) —31.30235469 e(70‘004114396373 t)

_ 98.19603573 e(—0.0003762010963 t)+ 28.05397191 e(—04005133722283 )

+73.10695799 e(70.0007163424399 t) —57.90413928 e(70‘001169532629 t)

47 82738713 e(—0.001735901602 ”—40.69420301 e(70.002415492011 )
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>animate ({u2(r,t) ,uc,ud,ul,us},r=-rl..rl,t=0..11*3600, frames=200, axes=boxed) ;

1404
1204
1004
303
B0

Ugone

40

207

015 01 005 0 005 01 015
r
>plot({uc,ul,ud},t=0..12*3600,axes=boxed,color=black) ;

30

udone

B0+

407 u(0,¢)

207

0 10000 20000 30000 40000
t

tdvne
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VIIL.3.4.2 Heat Equation in Spherical Coordinates:

1 0 1 &u

o’u ou 0
r’ sin@ 0¢

—+2r—+
or or

., Ou

sin ¢£J + g

ou_
o¢

o)

1) Sphere with angular symmetry (

Example: Floating ball

2) Spherical surface of fixed radius 7, (Z—u = 0) :
r

Example:

—_+_
r’sin’ 0 00°  k

u(r,¢,t9,t)
il

a ot

2 2
Gu O, 1 Oou,8_10u
or or rosin"000° k «aot

1 O . ,Ou 1 o’u

IEprmrew R el R e pv
;. sin@ O¢ o¢ ) v sin” 6 00

Diffusion of foreign mint coins in France

» Proj rﬂun nnes T mnu une piéce
d‘europ:mnm %:nufson u?n‘rmmunm e
en septembre 2002

[ 0% B0 153 I 0% M 45 M 0% §

e ki g uangs

une ‘euro re
dans pnm-rlrmmhﬂfm'l‘v;llls
en 2002, selon le origine
s pays d'origi

Belgique
Allemagne

6).
es
es
5
ns
la
it
its
s
o5
ve
n
la
25
le
Bt
n-
la
13
15
i
I
>
BY

g_1lou

k aot
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VIIL.3.4.3

1. Laplace’s Equation

separation of variables

PDE in spherical coordinates

Consider a BVP generated by separation of variables in a PDE in
spherical coordinates. We will only see what the Sturm-Liouville
problems are in this case.

Recall the general form of Laplace’s Equation in spherical coordinates
for the function u(r,¢,¢9), rebD:

’u 2 ou 1 °u 1 cos@du 1 &u
P L B Ly L N S RN
or- ror risinc@0¢" r° sin@ 060 r° 00

=0 (1)

or with differential operators written in self-adjoint form:

0| ,0u 1 &’u cos@ du Ou

O oul, [ Ou cosOou, Ou_ @)
or or | sin” 0 0¢° sin@ 060 060

Assume

u(r.e.0)=R(r) @(p) ©(0) (3)

Substitute into equation (1)

R06+2R00+— Rro'o+L %% raoe + L Roer =0
r 7 sin e sin@ r
rZ
Multiply the equation b
ply q Yy ROO
R" ! I @ cos@O O

et 2r—t——— —t—=0
R R sin"0 @& sinf @ O

Consider the axisymmetric case (% =0):

> R" " cos@ O O
re—+2r—+ —+—=0
R R sinf & O
Separate variables and set both sides of the equation equal to the same
constant
> R" R cosf @ O
rr—+2r—=—————-—=u
R R sind @ O

It yields two equations:

R’ R
) rr—+2r—-=
) 2 -

which can be rewritten in the form
7’R"+2rR' — iR = 0 (Euler-Cauchy equation)
or in the self-adjoint Sturm-Liouville form

—%(ﬁR')' = (~u)R @)

Solutions of this equation are sought in the form R ="
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2. Heat Equation

Separation of variables

) 0+9%%0 uo-0
sin
Use change of independent variable x=cos@ ,then
dg dx do dx

@ :i d—@ :i —sin@d—@ :—cosc9d—@—sint9i d—@
do\ do do dx dx do\ dx

2
=—cos9ﬁ—sin6’i(d@j dx ——cos6’@+sin29d o

dx dx\ dx )do dx dx’
Substitute into equation
2
—cos@d—@+sin2 0 d ? - cos 0
dx dx sin@

sinﬁﬁ—ky@ =0
dx

2

sin’ Hd ? —200s6’£+y@ =0
d.

dx x

dz@ de
2 _
(1—x ) — —2x——+u0=0

or in self-adjoint Sturm-Liouville form:

_ﬂ(z_ﬁ)‘i_ﬂ _ 0 5)

This equation is called Legendre’s differential equation. It happens that
its solution is bounded only if the separation constant is a non-negative
integer of the form

,u=n(n+1) n=0,12,..

Its solution consists of Legendre polynomials P, (x) (see Sec. 5.7).

Consider the axisymmetric heat equation for u (r,t) , reD,t>0 in
spherical coordinates:
u 20u L ou
— +———=q0"—
or’ ror ot

u (r,t) =R (r)T(t)

Substitute into equation (6)

(6)

RT+2RT =a*RT’
r

divide by RT and separate variables
Rﬂ 2 R! , T!
—_——=g—
R rR T
It yields two ordinary differential equations. Equation for R is
’R"+2rR — ur’R =0 (7)
which is a spherical Bessel equation of zero order (see equation (25) in
Sec. 5.6 with n =0, AAEM-II).
Eigenvalue problem:

IR= riz(rZR’)' — uR

= u

Its solutions are given by spherical Bessel functions
. | Jy (r )
Jo(r)= 2 g
Y,
Yo (r ) Z (r)

-5
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Why we cannot be completely satisfied with the method of separation of variables?

How about the time dependent boundary conditions, for example?
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VIIL.3.5 THE WAVE EQUATION

BASIC  homogeneous equation with homogeneous boundary conditions

1-D Cartesian

VIIL.3.5.1

1. Separation of variables

boundary conditions:

2. Sturm-Liouville problem

eigenvalues

eigenfunctions

Solution:

2 2
Zx_?:aiz% u(x,t), xe(O,L),t>0
Initial conditions: u(x,0)=u,(x)

Ot
Boundary conditions: u(0,£)=0, >0 @
k, aulL.1) +hu(x,t)=0, t>0 (Il

h
Denote H,=—=2>0
2

we assume that the function u(x,z) can be represented as a product of
two functions each of a single variable

u (x, y) =X (x) T (t) substitute into equation

a’X"(x) T(1)=X(x) T"(r) after separation of variables, one gets

XL with a separation constant

X - az T =H p H
X(0)1(t)=0 = x(0)=0
X'(L)T(t)+H,X(L)T(t)=0 = X'(L)+H,x(L)=0
X” _ ‘L[X — 0

This Sturm-Liouville problem has solution with g, =-1 :

A, are positive roots of equation Acos AL+ H, sinA,L =0

X, (x)=sinA,x

Then solutions of the second differential equation 7"+ A.a’T =0 are
T, (t) =c, cos A,at +c, sin A at

u, (x,t)=X,T, =sin(4,x)(c, cos A,at +c, sin A,at)

Then solution of the wave equation is a superposition

u(x,t)= isin (4,x)(b, cos A,at +d, sin A, at)

n=1
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initial conditions: t=0 u(x,0)= ib" sin(A,x) =u,(x)

n=1

which is a generalized Fourier series expansion of the function f (x)

over the interval (0, L) with coefficients

n

L L
Iuo (x)sin A, xdx Iuo (x)sin A, xdx
bn = . L = . .
Isinz A, xdx L_sin2AL
0 ! 2 42

The derivative with respect to 7 of the assumed solution is

% = i A,asin /Inx(— b, sin A, at +d, cos A, at)
n=1

Then the second initial condition yields

t=0 M:idﬂnasinﬂ”x:uj(x)
- at n=1
It can be treated as a Fourier series with coefficients
L L
Ju, (x)sin A, xdx J.u, (x)sin A, xdx
_0 _0
A0 = 12 1 vd B L sin24,L
'([sm xdx 5 741’1
then
L
_[uj(x)sin A, xdx
d — 0
Aa L sin22,L
2 44,
Then the solution of the initial-boundary value problem is:
3. Solution u(x, t) = i [bn cos(A,at)+d, sin(A,a t)} sin(4,x)
n=1
T
u, (x)sin(A,x)dx
© in( A L 1 ( ) ( n
ulx,t) = ; % D;uo (x)sin(4,x) dx} cos A at +| L 7 sin(A,at)
2 42,
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4. Normal modes of string vibration The solution of the Wave Equation is obtained as a sum of terms

overtones

standing waves

u,(x,t)=X, T, =sin(A,x)(c, cos A,at+c, sin A,at)

which we call the basic solutions. However, in the context of contributions

to the vibration of a string, these functions are known as normal modes.
In our example, for n=1,2,3,4,..., they have the following shapes

(see the Maple the file for animation):

>ml:=subs (n=1,X[n]* (b[n] *cos (lambda[n] *a*t)+d[n] *sin (lambda[n] *a*t))) :
>animate ({ml},x=0..L,t=0..9);

0.1

0 2 i, B 8 10
0.1

>m2:=subs (n=2,X[n] * (b[n] *cos (lambda [n] *a*t)+d[n] *sin (lambda[n] *a*t))) :
>animate ({m2},x=0..L,t=0..9);

0.1
0.058

01 b i 4 B g 10

005 first overtone

0.1

fundamental mode

>m3:=subs (n=3,X[n] * (b[n] *cos (lambda [n] *a*t)+d[n] *sin (lambda[n] *a*t))) :

>animate ({m3},x=0..L,t=0..9);

0.06
0.04
0.0z

ggai A i " B g 1]

second overtone

-0.04
-0.06

>md :=subs (n=4,X[n] * (b[n] *cos (lambda [n] *a*t)+d[n] *sin (lambda[n] *a*t))) :

>animate ({m4},x=0..L,t=0..9);

0.1

VAN

third overtone

The first of these normal modes is called the fundamental mode, while the
others are referred to as the first overtone, the second overtone, and so on.
The frequency of oscillation of the normal mode increases with its number
and is determined by the corresponding eigenvalue 4, and coefficient a,

which has a physical meaning related to the speed of wave propagation
(speed of sound). Fixed points exist in the vibration of overtones.

The entire motion of the string is a superposition of vibration of all
overtones with a different amplitude. The participation of different modes
in the string’s vibration is determined by the initial conditions.

If representing the initial shape of the string at rest requires the use of
different modes, then all of them will be present in the undamped vibration
of the string.

However, if the initial shape of the string exactly matches one of the
overtones, then only that mode will be present in the string’s vibration.

This phenomenon is known as standing waves. Standing waves do not
propagate; they only oscillate, maintaining the same shape.
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THE WAVE EQUATION Cylindrical Coordinates
2
Vzu+F(r,9,z) =i7a il
Vo ot
[”]s =f solid cylinder
[u]s =f t>(0 boundary conditions (rﬂ,z) < [0,r1)><[—7r,7r] ><(0,L) R}
[“],:,” Uy
5 initial conditions hollow cylinder
[“]5 =f [Eul:’ =ty (r.0.2) e (1, 1) x[-7.7]x(0.L) c R’
u(r,0,z,t)=u (r.0,z)+U(r,0,z,1)
STEADY STATE PROBLEM - PE TRANSIENTPROBLEM - HE
Vzu\_+F(r,9,z)=() v? :L
2
v initial conditions
[U ]t:t,, =Uy U
=f Ul =
[us ]S f [ ]S |i2U:| =u,
o =
supplemental eigenvalue problems SEPARATION OF VARIABLES
. 0, =-n0, =0,1,2,... Vo 1T
0"=no o " U(r,0,2t)=@(r,0,2)T (1) -~ -p
@ aT
=
0(0+27)=0(0) m=0  0,(8)=1
HELMHOLTZ EQUATION
n,=-n" 0,(0)=a,cos(nd)+b, sin(nd)
ol 1, n ; > 17
R+=R-ZR=pr  Ro+lg, TR =-2R Vo - po LR
r r r v T
R(0) < ap Han =
R(r)=0 = @(r,0,z)=R(r)@(0)Z(z
(r,) rZR,:’m+rR,;m+(rzijm —nZ)Rm=0 ( ) (r)e)z(2)
an(r)=‘]n(,{mr) n=0,12,.. R, O, 7
m=(0),1,2,.. S
Z"=yZ Zl=-w; Z,
sLp ‘ ; ’ B =—(A0, +07) T, (1) =, cos (v’ B,,ut) + ¢, sin(v B4t
[z]._, =0 = V="
[Z]z:K =0 Zk (Z)
STEADY STATE SOLUTION TRANSIENT SOLUTION
U(r.0,z,t)=@(r,0,z)T(¢)
see p.654 for the case of solid cylinder, and
p.658 for the case of hollow cylinder
SOLUTION OF IBVP
u(r,@,z,t) = u (V,H,z) + U(r,é’,z,t)
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VIIL.3.5.2 1-D polar coordinates Wave Equation in polar coordinates with angular symmetry

Urt) u lou 10u
P ey
or" ror v ot

u(r,t), 0<r<r ,t>0

Initial conditions: u(r.0)=u,(r)
7 s ou(r,0
3% (at ). u(r)
Boundary condition:  u(r,,¢)=0 t>0 (Dirichlet)
u(0,t) <o
1. Separation of variables Assume

u(r.y)=R(r) T(¢)

Substitute into the equation

rRT+ LR =L R

r v
After separation of variables (division by RT), we receive

R—" + IR _ LT—" = with a separation constant
R rR V1 " -

boundary condition r=r, u(r,t)=R(r,)T(t)=0 = R(r)=0

2. Solution of Sturm-Liouville problem  Consider the equation for R(r) for which we have a homogeneous

boundary condition:
R"+1R'—yR =0 R(r)=0
r
That is the Eigenvalue problem for the Bessel equation of 0" order,

solution for which is presented in VII.2, p.509.

Separation constant u, ==

Eigenfunctions R, (r)=J,(4,r)

n

Eigenvalues are the roots of  J, (4,r,)=0

The figure shows the graph of the function W(/l) =J, (Zr,) with r, =1

0.a
0.4

Dj 4 8 2 D
0.4

The weight function p(r)=r
Orthogonality _[JO (A7), (A,r)rdr=0 for n#m
0

Norm |
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solution for T

3. Solution

4. Initial conditions

The result of a negative separation constant x =—1" agrees with a
physical sense of solution for T(t). Equation for T
1 Tﬂ 12

a_ZF /’l - n
Then solutions T

n

T,(t)=a, cos(vﬂnt) +b, sin(vﬂ.nt)

n

u(r,r)= Z[an cos(wlﬂt)+b,1 sin(vlntﬂ J, (A7)

n=1

(¢) with determined eigenvalues are

We will choose the values of coefficients in such a way that initial
conditions are satisfied.

Consider the first initial condition
u(r,O) = ianJ,, (/1"}”) =u, (r)
n=1

then coefficients for the generalized Fourier series are defined as

ju,, (r)J,, (lnr)rdr Iruo /1 r dr
an = . ” n %
IJj (ﬂnr)rdr i, (ﬂ"rl)/
0

The second condition for the derivative with respect to time

au rt d

ZJ A,r)(—a,Avsin vt +b,A,vcos A,vt)
becomes
au(r 0)

;b/lv.]( ) u,(r)

Then coefficients in this generalized Fourier expansion are

lrrdr lrdr

Iul Iru,
= b =

bnﬂ’nv - 7 n 2
IrJ,f (/lnr)rdr VA i JI (/1”71)/
0

Then solution of the initial-boundary value problem is

5. Solution

u(r,t) = i [an cos(/lnvt)—i-bn sin(/lnvt)] J, (lnr)

>

Iu{,(r)J,,(/lnr)rdr]cos(/lnvt)+{ i j;ul(r)J,)(ﬂ”r)rdr}in(ﬂ.nvt)} :

V.
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VIIL3.6

separation of variables

SINGULAR STURM_LIOUVILLE PROBLEM - CIRCULAR STRING

We studied a regular Sturm-Liouville Problem in which the ordinary differential
equation is set in the finite interval and both boundary conditions do not vanish.
In a singular Sturm-Liouville problem not all of these conditions hold. Usually,
the interval is not finite, and one or both boundary conditions are missing.
Instead of boundary conditions, when the solution may not exist at the
boundaries, the eigenfunctions should satisfy some limiting conditions. One of
such requirements can be the following:

Let y, and y, be eigenfunctions corresponding to two distinct eigenvalues A,

and A,, correspondingly. Then they have to satisfy the following condition:

fim () ()24 (1) =2 (¥) 2 ()] = lim p(x)Ly, (%) 93 (x)= 2 (x) 9] ()]

In the other cases the absence of boundary conditions is because of the
periodical or cycled domain, when we demand that the solution should be
continuous and smooth

)= (x,) and y'(x,)=y(x,)

In this case, it is still possible to have the orthogonal set of solutions {y, (x)} on

[x1 X2 ]

We will not study the formal approach to solution of such problems, but rather
discuss the practical examples of its application.

Here, we consider an interesting example of a singular SLP in a cycled domain
with no boundary conditions. Physical demonstration of this example can be
seen on the ceiling of the hall of the Eyring Science Building.

Example I Consider vibration of a thin closed ring string of radius r
described in polar coordinates by deflection over the plane z =0

u(ﬁ,t), 0e [0,272’] ,t>0
The Wave Equation reduces to
1 0’u , 0%u
r—zagz=a o r = const
with initial conditions

u(0,0)=u,(6)

ou

—(0,0)=u,d

2 (9.0)=u,0)

There are no boundaries for a closed string, but rather a physical
condition for a continuous and smooth string:

u((),t)= u(27r,t) t>0

Ou ou

%(0,1):%(277,[) t>0

Assume u(6.t)= ©(0) T(t)

. . . 1
Substitute into equation —®'T=a’ © T"
r

. e"  ,,T . .
Separate variables o =a'r T =u M 1s a separation constant
. e’
Consider =
P H
O"—ue =0

We already have experience with solution of this special equation for regular
Sturm-Liouville Problems and know that in all cases except the case of both
boundary conditions of Neumann type, only a negative separation constant ,
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3

>

S

Il
M

n

0

(
[

1 =—A", generates eigenvalues and eigenfunctions. General solution in this
case is
O(0)=c, cos 20 +c, sin 10
This solution suits our problem because it is periodic. The values of 4 which
satisfy periodicity on the interval 8 [0,27:] , are
_2nmw

" r
Therefore, solutions are
e, (0) =c,,cosnf+c,, sinnd
Obviously, that for all n=0,1,2,... 2x1is a period for this solution and for its

derivative
o! (0)= —c, ,nsinn@+c,, ncosn

n

With these values of the separation constant, x, =-A. =—n’, n=0,12,...
consider the equation for 7(¢):

"

22T 2

a’r’—=-n
2

n

2.2
ar

which also has a periodic (in ¢ ) general solution

T"+ T=0

n . n
T, (t):c3n cos—t+c,, sin—t
' ar ' ar

Then periodic solution of the wave equation can be constructed in the form of an
infinite series:

u(o.)=00)) =36,0),()

S

S ( : n . n
> (c,, cosnb+c,, sinnb) c;, cos—t+c,, sin—t
n=0 ar ar

ar ar ar j

0 n 0 si n innd n inno si n
€;,C;, cosnbcos—t+c, c, cosnbsin—t+c, c;, sinntcos—t+c,, c, sinnbsin—1t

b,,cosn@cos—t+b,, cosndsin—t+b;, sinnb cos—t+b,, sinndsin—t

ar

ar ar ar j

where coefficients b are new arbitrary constants which can be chosen in such a
way that this solution will satisfy the initial conditions.
Consider the first initial condition:

t=0 u(9,0)=u0(¢9) :i(b,’n cosn@+b;, sin n¢9)
n=0

=b,, +Z(b1'n cosn@+b;, sin nﬁ)
n=1

which can be treated as a standard Fourier series expansion of the function
u, (H) on the interval [0,27[]. Therefore, the coefficients of this expansion are

Ji 2z

b, :; Iuo(é’)dﬁ

b,, = £l fuo(ﬁ)cos nédo
T

2z
b;, -1 jua(ﬁ)sin n6do
)
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For the second initial condition, differentiate the solution first with respect to ¢

Ou = n . n n n n . . n n . n
—(Q,t) = Z -b,,—cosn0@sin—t+b,, —cosnlcos—t—b;, —sinnfsin—t+b,, —sinndcos —t
ot =0 T ar ar T ar ar T ar ar " ar ar

then apply the second initial condition

0 < .
6—1:(6’,0)=u,(9) =Z[b21n %cosn9+b4yn %smn@j

n=0
ad n n .
=b,, ~0+Z b,,—cosn@+b,, —sinnd
' py Toar Toar
Where the coefficients are determined as

1 2r
byy-0 :; _’[”1(9)611‘9

b,, _art u,(@)cosn@d@
: 7y
2z

b,, _arl uI(H)Sinn&iH
n s

Coefficient b,, can be any constant, it will not influence the initial speed of the

string, but not to influence the initial shape of the string it has to be chosen equal
to zero (otherwise, initially the string will shifted by 5,, and will not be

centered over the plane z=10):
b,, =0

Therefore, solution of the problem is given by the infinite series

& n .n . n . . n
u(@,t)=b,, +Z(b1n cosn@cos—t+b,, cosnfsin—t+b;, sinndcos—t+b,, smn@szn—tj
' ' ar ' ar ' ar ' ar

where coefficients are determined according to abovementioned formulas.
Consider particular cases (Maple examples):

1) isolated wave

2) standing waves
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VIIL.3.7 REVIEW QUESTIONS, EXAMPLES AND EXERCISES
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REVIEW QUESTIONS 1.  What is the main assumption in the method of separation of variables?

2.  What is a separation constant?

3. How does the Sturm-Liouville problem manifest in the method of
separation of variables?

4. What is the form of the solution of the initial value problem (IVBP) in the
method of separation of variables?

5. How many terms are required in the truncated infinite series for an accurate
representation of the solution?

6. Can you provide an example when the solution of the IBVP is described

just by a single-term trigonometric function? How does this occur?
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EXAMPLES AND EXERCISES 1.

domain D is an open set

D is a closure of the domain D

D is a closed set

boundary S =D\D

Let D < R’ be a domain (open connected set), and let S =D\ D
be the boundary of D (recall Section VIII.1.11, p.568).

Show that if re S is a point of the boundary of D, then any open ball
B(r,R) with a radius R >0 includes points both from D and R*\D,
i.e. intersection of anyB(r,R) with the domain and with the surroundings

is not empty:

B(r,R)nD#@ and B(r,R)(R’\D)#@.

Remark: this property is usually used as the more general definition of
the boundary:

If AcR” is an arbitrary subset of R" (not necessarily domain),
then x e R" is called a boundary point of A if for any radius R >0 :

B(x,R)nA#D and B(x,R)"(R"14)#D .

Then the set 04 = {x eR"

x is boundary point of A} is called the boundary

of 4 in R".

If S=D\D is the boundary of domain D, the S is the boundary of S in
general sense too.

Examples of the boundary in general sense:

a) 0(0.1]={0.1}

b) 0 {a} = {a} (the boundary of an insulated point is the point itself)
c) 0Q=R
d 0Z=Z
e) 00=0
) oR"'=0
1 1
g) 6{— n EN}={— ne N}u{()}
n n
a) Solve the Dirichlet problem for the Heat Equation:
o’u  ,0ou
=a’ — ulx,t): xel0, L], t>0
ox’ ot ( ) [ ]
Initial condition: u(x,0) = u(x)
Boundary conditions: u0,0)=0, >0 (Dirichlet)
u(L,t)=0, t>0 (Dirichlet)

b) Sketch the graph of solution for L=3 and a=0./ and initial conditions:

i) u(x)=1
i) u, (x) = x(L - x)
i) u,(x)=sin2x
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3. The Superposition Principle for Non-Homogeneous Heat Equation with
Non-Homogeneous Boundary Condition.:

Heat Equation:
o’u , Ou
—+F(x)=a — ulx,t): xe(0,L), t>0
()= (1) xe(o)
Initial condition: u(x,O) =u, (x)
Boundary conditions: u(0.t)=g,, t>0 (Dirichlet)
ou (L, t)
=g, t>0 (Neumann)
ox
Supplemental problems a) steady state solution:

2
aa;s +F(x)=0 u_y(x): xe(O,L)

U (0) =8

b) transient solution:

ox? ot

U(x,t): xe(O,L), t>0

First supplemental problem is a BVP for ODE.
The second supplemental problem is an IBVP problem for the
homogeneous Heat Equation with homogeneous boundary conditions.

Show that u(x,t)=U (x,t)+u,(x) is a solution of the non-homogeneous
IBVP.

Solve the problem with
F(x)=5g,=1 g, =3and u,(x)=x(4-x).

Sketch the graph of the solution.
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4. a) Solve the IBVP:
0’u 5 Ou
—=a"—+F(x ulx,t), xel0,L), t>0
TR ules), xe(0r)
initial condition: u(x,O) =u, (x)
boundary conditions: u(0,1) = f, t>0 (I
ou(L, t)
k—+hu(L,t):f2 t>0 (1D
dx
b) Sketch the graph of solution with
L=4,a=05,k=20,
, L
uo(x):x —3x+5,f, =10, f, =1,F(x)=x
5. a) Solve the IBVP for the Heat Equation in the plane wall with distributed
heat generation:
o’u 1 0u
—+F(x)=——, ulx,t), xel0,L), t>0, F(x X
Tl ), o) (¥
Initial Condition: u(x,O) =u, (x)
. ou (O,t)
Boundary Conditions: 5 =0 t>0
X
ou(L, t)
k =h,|T, —u(L,t t>0
dx : [ «mul )]
b) Sketch the graph of solution with
L=0.5,0a=0.0005, k=150,
u, (x) =200,T,=10,h, =250,4 = 200000
6. a) Solve the Heat Equation in the cylindrical domain with angular
symmetry
2
a—l;—i-ia—u:aza—u u(r,z)' 0<r<r,t>0
or~ ror ot
Boundary condition: u(r,1)=0 >0
Initial condition u(r.0)=u,(r)
b) Sketch the graph of the solution for

r,=0.5
a=3
uo(r):6r2+1
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7. a) Solve the Heat Equation in the cylindrical domain with angular

symmetry
2
1
a—zl-i-—a—u:aza—u ulr,z), 0<r<r, t>0
or’ ror ot
Boundary condition: u(r,.t)=f, t>0
Initial condition u (r,O) =u, (r)

b) Display some creativity in visualization of solution for

r,=0.5
a=3000
fi=70

u, (r)=25r"+20

¢) Give some physical interpretation of the problem

8. Solve the IBVP for the Heat Equation in polar coordinates with angular
symmetry:
Ou Tou_ o

o’ ror ot ulr,t), ref0m), >0

Initial conditions: u(r,0)=u,(r)

i ou(r,t)
Boundary condition: k6—+ hu(r,.t) = f, t>0
r

And sketch the graph of solution for
r=2,a=05,k=01, h=12, f,=2, and u,(r)=(r-r

(hint: first, find the steady state solution)

9. a) Solve the Heat Equation in the annular domain with angular symmetry
(cylindrical wall with uniform heat generation)

2 .
Gu Tou g _Tou 1.

> r<r<r, t>0
o ror k aot

Boundary condition: u(r,t)=T, t>0
u (rz,t) =T, t>0
Initial condition: u(r.0)=u,(r) r<r<nr

b) Display some creativity in visualization of the solution for

r=05 T, =50
r,=0.6 I,=10
k=150 u, (r)=10

a =0.00001 q =500000
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10. EXAMPLE Radiation Induced Thermal Stratification in Surface Layers of Stagnant Water

Professor Raymond Viskanta (on the left)
Antalya, Turkey, June 2001
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Radiation Induced Thermal Stratification in Surface Layers of Stagnant Water

Based on papers:

Introduction

Our Objective:

[1] D.M.Snider, R.Viskanta Radiation Induced Thermal Stratification in Surface
Layers of Stagnant Water, ASME Journal of Heat Transfer, Feb 1975, pp.35-40.

[2] R.Viskanta, J.S.Toor Radiant Energy Transfer in Waters, Water Resources Research,
Vol. 8, No.3, June 1972, pp. 595-608.

The vertical temperature distribution in a body of water have important effects on chemical
and physical properties, dissolved oxygen content, water quality, aquatic life and ecological
balance as well as mixing processes in water.

Solar radiation is recognized as the principle natural heat load in waters. Some investigators
have considered the radiation to be absorbed at the water surface (i.e. opaque) and others
treated the water as being semitransparent but ignored the spectral nature of radiation. Since
the ultraviolet (UV) and infrared (IR) parts of the incoming solar radiation are largely
absorbed within the first centimeters of the water and the visible part (VI) penetrates more
deeply and carries significant energy to depths, the modeling of water as a gray medium is
open to question and needs to be examined.

In the works of Raymond Viskanta (Purdue University) and coworkers, analysis for the time
dependent thermal stratification of in surface layers of stagnant water by solar radiation was
developed. The transient temperature distribution is obtained by solving the one-dimensional
energy equation for combined conduction and radiation energy transfer using a finite
difference method. Experimentally, solar heating (7, = 5800K ) of water is simulated using

tungsten filament lamps (7, =3250K ) in parabolic reflectors of known spectral
characteristics.

Analytical investigation of transient combined conduction-radiation heat transfer with two
band spectral model (VI-IR) of incident radiation.

Spectral distribution of emissive power:

Ga+l7

Be+l7

4e+17

2e+17

By, Ky

By Ky
(17¢m)

T, = 5800K

T, = 3250K

" " "
qreﬂected qV[ qIR
infrared radiation is

completly absorbed
by the surface of water

!

lambda X

15 2 25 3

]
=)

) \y \ | : B = extincton
R coefficient

-1
of water, m

penetrated
Q( ) visible radiation

o

—
__ AR WP T R TR R e WA

1
B, {—:‘ spectral absorption coefficient of liquid water
cm
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Model:

Water Properties:

Data:

a. Solve the given IBVP:

Heat equation:

Initial condition:

Boundary conditions:

Source function

(radiant energy absorption rate):

Extinction coefficient

Density

Specific heat

Conductivity

Length
Temperature

Visible irradiation
Infrared irradiation

Efficient convective coefficient

du O(x) _ 1 ou

ox’ k

B=70
p=1000

c, =4180

k=0.6

L=0381
T,=T,, =T, =25

Gy =850
G =150
hy =12

a ot

u(x,t):

u(0.05m,3000s) =

28.3°C

particular value

b. Sketch the graph of the solution for # = 5,10,15,30,60,90 min and compare with Viskanta’s results.

¢.  Your view on the problem. How can the accuracy of the model be improved?
What have you learned from this problem?

B — ANALYSIS
= 0
x EXPERIMENT 1 (min)
a 15
12 o 30
o 60
14 o o
16
18
20
Fig. 4 ¢ i of

X (cm)

2

£, (W/m?)
142
nz2
162

(min)
30
20

of variation in radiant energy flux considered absorbed al

on predicted temperature distribution for lamps at 3250 K, 7,

and predi
1or lamps at 3250 K, T, = T.. = 25 C and L = 38.1 cm
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Solution:
Fu 00 tau
ox’ k a Ot

Q(x) = ‘I{'Ilﬂe‘_ﬂx

Heat equation:

Initial condition: u(x,0)=u,(x)=T,
Boundary conditions: [—ki—u =—hy (u=T,)+ ql”R} =0
X x=0
[M]X:L = TL

Ou }
—k—+hu =h,T, +q
eff eff “ oo
dx - IR

i 5u hej] M:| — hef}"Too + qI"R
x=0

| dx Kk k
[ ou h@/f he/]'Too +ql"R
——+ Hi = H=— =
L dx+ u:|r0 f;] k ’ f‘o k
o’u 1 6u qup -
——+F(x)=—— L F(x)="1e
i r(x)- 22 ve(or) | F()=TE
0
I:_d_z+Hu:|r0 B f;)
[u]x:L :TL
u(x,O) =u, (x) =T,
I  Steady State Solution:
ou,
P +F(x)=0 xe(0.L)
ou
_ s H —
S| -
[uS ]x:L = 7}‘
u,
P +F(x)=0
o’u, B g
o’ B —F(x) B —%e '
%:_qglﬁjefﬂxdx
o’ k
Ou, gwB 1 -B
s _ xd _
ox’ k (—ﬁ)je ( ﬂX)
% :q_{lfle—ﬂx +c
ok !

s

n
u =que'ﬂxdx+qx+c2
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u, = v e +ex+e,
kB

Boundary conditions:

x=0 - qﬂe’ﬂ"+cl +H| -, e x+e, =f,
k k -
(ﬁ+clj+H(—Z‘” +czj f
" h,T, +
—CI+Hc2:qVI(I+ﬁJ+fO = p in
H
¢, +Hc, = 1+— 5 qvi + T, + i
hyy
—kc, + he“fCZ 1+— kﬂ Gvi + din +heﬂTw
x=1L qVI lyeL+c,=T,
kﬂ
¢L+c, = q‘” 4T,
In matrix form:
h .
(1 4 jq\”fl +qm +heffT
L 1|c q_{;le*“_ﬂ"
kp g
Use Cramer’s Rule:
~k  h,
det| " T |\==(k+hyL)
he : "
£1+ k;jqw +ap +hy T, hy
det
h "
dvi - off qvi -
k\; LT, 1 (1+kﬁqul+qu+th/T h‘ﬂf‘;e ~h,T,
C] = =
dorl K ~(k+hy,L)
L 1
(-BL)
he " " - Oh q0 e
(1+k2Jqu+qu+heﬁ’(Tw ) heﬂ q; J thnf+qlr+q0+ kB [TL+k|3Jh
¢ = o —k—Lh
! ~(k+h,L)
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he n n
—k (”ijqVﬁqurheﬁTw
det / , 5
q’ — q -pL eff " "
L r"ge Py, —kk—‘;e —kTL—L[1+kﬂjqw—qIRL—h‘ﬁTxL
¢, = =
detl K ~(k+h,L)
L 1
9w PLYkT + L ]+he” " tg" L+h, T L #D)
¢ : g v A e —k (TL La0e Z 5 J -L (h Tinf+ qir + q0 + —qkoﬁhj
c, = W
: (k'f‘he/fL) 02 : —k—L /’l
hfff " " q{’/l -pL q(ll -pL hl’/f' " "
) 1+ g |4 i +hy (T, =T,)=h, g L kT, + L) 1+ g | +quL+h, T, L
__vi e, B B ot B B
kp —(k+heﬂ.L) (k+he/].L)

II Transient Solution:

U(x,t) = u(x,t)—us (x)

2
Zx(;[ = éaa—lt] xXe (O,L) Supplemental SLP (RD):
ou . .
[_E +HU } =0 R A, roots of characteristic equation:
x=0
[U]_, =0 D X, =sin[ A, (x—L)] i
U(x,O) =u, (x)—uT (x) =U, (x)

Solution:

IIT Solution:
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>U0:
>Ul:
>U2:
>U3:
>U4:
>U5:

>U6

=subs (t=0,u(x,t)):

=subs (t=300,u(x,t)):
=subs (t=600,u(x,t)) :
=subs (t=900,u(x,t)):

=subs (t=1800,u(x,t)):
=subs (t=3600,u(x,t)) :

Comparison

Current analytical solution

— —
_ (] _ (]
L 1 1

:=subs (t=5400,u(x,t)) :

o]
[
L

30 min

90 min

Experimant and numerical solution [Viskanta]

- S0

A\

N\

T-Tg (K)

ez

L0

X (ecm)

Lo

EXPERIMENT
0
0

(min)
30
890

e

Fig. 8 Effect of variation in radiant en
i the surface on predicted temperature dis

T-=25C,and L= 38.1¢cm

ergy flux considered absorbed al
tribution for lamps at 3250 K, T, =

-0z
- 52

90,

00

DY

H
200

200,

1o

Zvo
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11.

12.

13.

Find the solution of the IBVP for the Wave Equation
o’ 190’
ax—?:a—ZaT? u(x,t), xe((),L),t>0
initial condition: u(x,0)=u,(x)

ou(x,0

(6t ). i (x)

boundary conditions: u(0,1)=0 >0

u(L,t)=0 >0

Sketch the graph of solution with L =2, a=0.5, and

a) u,(x):—().], u()(x):xz(L—x)z

b) u,(x)=0, u,(x) :sin%x

(observe the phenomena called standing waves)

Find the solution of the IBVP for the Wave Equation

o’ 190°

@C—L;=a—2?2u u(x,t), xe(0,L), t>0

initial condition: u (x,O) =u, (x)
ou(x,0
ey

boundary conditions: —u'(0,0)+Hu(0,0)=0, t>0
u(L,t)=0 t>0

Sketch the graph of solution with L =5, a=2.0, and

a) u,(x) =0.2, u, (x) =(L-x)
b) u,(x)=0, u,(x)=X,(x) (cigenfunction)

a) Solve the IBVP:

62u 2 ou (X)

S a o tF ulx,t), xe(0,L), t>0

initial condition: u(x,0) = u (x)

boundary conditions: u(0,1) = f, t>0
kwmu(m) =f, t>0

dx

b) Sketch the graph of solution with

(Dirichlet)
(Dirichlet)

(Robin)
(Dirichlet)

(Dirichlet)

(Robin)

L=4,a=05,k=2.0, u,(x)=x(x=L/2)+5,f,=10, f,=1,F(x)=x
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14A. Find the solution for vibration of the annular membrane with angular
symmetry:

5 2

Initial conditions: u(r.0)=u,(r)

Boundary condition: u(r,1)=0 >0

u(rz,t):0 t>0

14B. Heavy membrane

Find the solution for vibration of the annular membrane with angular

symmetry:

Fu 10 p( )= 8 u), re(nn). 150

o’ ror ot

Initial conditions: u(r,0)=u,(r)
Zr0)=1,(r)

Boundary condition: u(r,1)=0 t>0

u (rz,t) =0 t>0
And sketch the graph of solution for

rn=1,rn=2a=05, F=—].5,u,,(r)=(r—r1)(r2—r), and u](r)=0.
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z

Non-Classical IBVPs

15. (Flow Between Two Plates)

o°’r o’T pc, oT ¢ pc, oT
StV =———
ox 0z k ox k k ot

x=0

A

[\N]

|

S
NN NSNS

1l
NNN8 N

Find steady state solution for ¢ =0.
Sketch the graph for 7, =80, T, =10, v=2, L =0.02 , fluid is water.

16. (Transient Conduction in the Fin)
AT,

©

7 Wi 7,

2 . c
a_{_h_P(T_TOO).,_i:’O Pa_T
ox” kA, kK k ot
x=0 T=1I,
x=L T=T,
t=0 T=1I,

Find transient state solution for ¢ =0.

circular copper fin (D =0.005)

Sketch the graph for 7, =200, T, =50, T, =10, T,=10, h=150,L=0.2,
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17. [Based on Nellis&Klein, p.37]

Absorption in a lens

Analytical investigation of transient combined conduction-radiation heat transfer with a gray spectral model of

incident radiation.

A lens is used to focus the illumination radiation that is required to develop the resist in a lithographic

manufacturing process

The lens is not perfectly transparent but rather absorbs some of the illumination energy that passes through it.

convective-radiative

surroundings with
T, hy

N2

4,

incident radiative flux

x=0

dissipation of the net B = extincion

radiative flux into heat T

aqﬂ 4
g(x)=—"—(x of water, m
()=~ ()
x=L=0.Im
transmitted radiation
. o’u x) I0u

Model: Heat equation: —+ & =——

The Lens Properties:

Data:

Initial condition:

Boundary conditions:

Dissipation source function

(radiant energy absorption rate):

Extinction coefficient

Density

Specific heat

Conductivity

Length

Temperature

Incident radiative flux

Efficient convective coefficient

ox’ k a Ot

B =100 m”

p =2500 ke
m

¢, =750 T
kg-K

k=15 .
m-K

L=0.1 m

T, =T,=20 °C

g, = 1000 L&
m

w
hyy =20
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a. Solution of the given IBVP:

u(x,t):

b. Steady State Solution:

U(x)z

c. Sketch the graph.
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18. Investigate the temperature field in the long column of square cross-section two adjacent sides of which are
thermally insulated and two others are maintained at temperatures 7, = /00°C and 7, = 500°C if initially it

was of uniform temperature 7, = 20°C . Sketch the temperature surfaces.

19. Use separation of variables for solution of IBVP for long cylinder with angular symmetry. (S—Z = 0] :

u 1ou u g 1ou
— et — =
o’ ror 0 k aot
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20.

Set up a mathematical model (choose an appropriate coordinate system and dimension of the
problem, write the governing equation and corresponding initial and boundary conditions) for the
following engineering models (do not solve the problem):

a) A very thin long wire dissipates energy in the massive layer of the stagnant media with the rate

per unit length ¢, {K} The media has a thermal conductivity k,[LK} Determine the
m m-

stationary temperature distribution in the media.

b) In the massive layer of homogeneous material (with thermal properties &, p,c,) which was
initially at the uniform temperature 7, , a localized heat source spontaneously started to dissipate

energy with the rate ¢ [W] Determine the development of the temperature field in the material.

¢) A very long tree trunk of radius R in the forest is exposed to the surrounding air (average wind

m

speed is v { }), but the dense crown prevents the direct sun radiation of the trunk. Set up the

N

mathematical model describing the temperature distribution in the tree trunk during the day.
Conductivity in the tree depends on direction: it is much higher along the tree than in the radial
direction.

. . . S w
d) A wide reservoir of water of L meters deep is exposed to the solar irradiation G,, {—2}
m

incident at the angle @. Penetration of the solar radiative flux along the path s is described by the
, 1] . . .
Lambert-Beer Law G(x) = G,cos@ e, where «, {—} is the gray absorption coefficient of
m
water. Then the solar energy dissipated in water (radiative dissipation source or the divergence of
dG(x)

radiative flux) is determined by Q(s):—d—, [13} Set up the mathematical model
X m

describing the equilibrium temperature field in the water layer.

e) Two opposite sides of the long column are insulated. There is an intensive condensation of the
water steam on one of the other sides. The last side is exposed to the convective environment at

. . /4 . . .
temperature 7, and convective coefficient %, {Z—K} . Due to some chemical reaction there is
m .

production energy in the column with the volumetric rate ¢, {—?} . Initially, column was at the
m

uniform temperature 7,,. Describe the transient temperature distribution inside of the column.
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Stanislaw Mazur and Per Enflo

Stanislaw Mazur was a close collaborator with Banach at Lwow and
was a member of the Lwoéw School of Mathematics, where he
participated in the mathematical activities at the Scottish Café.

On 6 November 1936, he posed the "basis problem" of determining
whether every Banach space has a Schauder basis, with Mazur
promising a "live goose" as a reward: Thirty seven years later, a live
goose was awarded by Mazur to Per Enflo in a ceremony that was
broadcast throughout Poland.

Lvov in 2009


https://www.revolvy.com/topic/Per%20Enflo&item_type=topic
https://www.revolvy.com/topic/Lw%C3%B3w%20School%20of%20Mathematics&item_type=topic
https://www.revolvy.com/topic/Scottish%20Caf%C3%A9&item_type=topic
https://www.revolvy.com/topic/Approximation%20problem&item_type=topic
https://www.revolvy.com/topic/Banach%20space&item_type=topic
https://www.revolvy.com/topic/Schauder%20basis&item_type=topic
https://www.revolvy.com/topic/Per%20Enflo&item_type=topic
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