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  VIII.3.1   HEAT EQUATION IN PLANE WALL – 1-D Heat Equation 
                                              
 
  VIII.3.1.1    BASIC CASE:     Homogeneous equation,  Homogeneous Boundary Conditions 
 
 
 

          
2

2

u 1 u
tx α

∂ ∂
=

∂∂
            ( )t,xu :    ( )x 0,L∈ , 0t >    

 
                                              Initial condition:   ( ) ( )xuxu 00, =    
   
          Boundary conditions:  [ ]x 0u 0

=
= , 0t >         (I, II or III  kind) 

                [ ]x Lu 0
=

= , 0t >         (I, II or III  kind) 
                  
 
 
 
 
1) Separation of variables:    ( ) ( ) ( )u x,t X x T t=  
 
 Boundary conditions:     [ ] [ ] ( )x 0 x 0u X T t 0

= =
= =  ⇒   [ ]x 0X 0

=
=  

          [ ] [ ] ( )x L x Lu X T t 0
= =

= =  ⇒   [ ]x LX 0
=

=  
       

          X 1 T
X T

µ
α

′′ ′
= =   

 
 
 
2) Sturm-Liouville Problem:    X X 0µ′′ − =  

          [ ]x 0X 0
=

=     ⇒   2
nµ λ= −  n 1,2,...=   

          [ ]x LX 0
=

=       ( )nX x     
 
 
 
3) Equation for T :      T T 0αµ′ − =  

 
 
          2

nT T 0αλ′ + =    ⇒   ( )
2
n t

nT t e αλ−=  
 
 
 
 

4) Solution:       ( ) n n n
n 1

u x,t a X T
∞

=

= ∑   
2
n t

n n
n 1

 a  X  e αλ
∞

−

=

= ∑  

 
 
 

Initial condition:      ( ) ( )0 n n
n 1

u x,0 u x a X
∞

=

= = ∑   ⇒   
( ) ( )

( )

L

0 n
0

n L
2
n

0

u x X x dx
a

X x dx
=

∫

∫
 

( )0u x

( )u x,t

0 L
x

[ ]x Lu 0
=

=[ ]x 0u 0
=

=
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  Example 1         Neumann-Neumann Problem 
   

          
2

2
2

u ua
tx

∂ ∂
=

∂∂
               ( )t,xu :    ( )x 0,L∈ ,   0t >    

 
                                              Initial condition:   ( ) ( )xuxu 00, =  
   

          Boundary conditions:  
x 0

u 0
x =

∂  = ∂ 
   0t >         (Neumann) 

                
x L

u 0
x =

∂  = ∂ 
  0t >          (Neumann) 

 
                (both boundaries are insulated)  
 
 
Separation of variables:     ( ) ( ) ( )u x,t X x T t=  

 

Boundary conditions:       0x =  ( ) ( ) ( ) 0tT0X
x

t,0u
=′=

∂
∂  ⇒  ( ) 00X =′  

 

          Lx =  ( ) ( ) ( ) 0tTLX
x

t,Lu
=′=

∂
∂  ⇒  ( ) 0LX =′  

 
Solution of SLP:       X X 0µ′′ − =  2

n nµ λ= −         
  

0 0λ =   0X 1=     

L
n

n
πλ =  n

nX cos x
L
π =  

 
 n 1,2,...=   

              
  
Solution for T:       2

nT T 0αλ′ + =     ( )
2
n t

nT t e αλ−=  

          T 0 T 0α′ + ⋅ ⋅ =     ( )0T t 1=  
 
 

Solution:        ( ) 0 0 0 n n n
n 1

u x,t a X T a X T
∞

=

= + ∑  
2
n t

0 n n
n 1

a a X e αλ
∞

−

=

= + ∑  

      

( )
L

0 0
0

1a u x dx
L

= ∫  

 

( )
L

n 0
0

2 na u x cos x dx
L L

π =  
 ∫  

 
 
      
Solution of IBVP:          

( )
( )

2 2

2

L

0 nL t
0 L

0
n 1 0

u x  dx
2 n nu( x,t ) u x cos x dx cos x e

L L L L

παπ π∞ −

=

    = +     
    

∫
∑ ∫  

 
 



Chapter VIII  PDE                                  VIII.3  Transient Initial-Boundary Value Problems                                November 4, 2023                   
 

619 

Particular case:                  ( )
2

0
Lu x 100 10000 x
3

 = + − 
 

o C   , 2 2
2

1 sa 500
mα

 = =   
(steel),    L=0.1m 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Comments:       1)   The solution is in the form of an infinite series.   

If the initial temperature distribution given by the function ( )xu0  is 
integrable, then the Fourier series is absolutely convergent and the function  

( )txu ,  satisfies the Heat Equation and initial and boundary conditions.   

Therefore, it is an analytical solution of the given IBVP. 
 

2)    With the increase of time, the solution approaches the steady state (the  
averaged temperature in the slab   ).  Boundaries are insulated, and there are 
no heat sources.  As a result, no heat escapes into the surroundings.  The 
driving force – temperature gradient – is directed toward the areas with 
lower temperature.  There exists a process of redistribution of heat energy 
that produces the uniform temperature in the slab.  

 
3)   Basic functions consist of the product 

( )
( )



non-dimensional time
                 Fo

2 2 2
22
tn nt

LL
n

n nu x,t cos x e cos x e
L L

απ παπ π
 

−−  
    = =   

   
 

where the cosine function provides the spatial shape of the temperature 
profile; and the exponential function is responsible for decay of the 
temperature profile in time. 

       
4)   The rate of change of temperature depends on the thermal diffusivity α . 

 
5)   Very often, a 1-D Heat Equation is treated as a model for heat transfer in a  

long very thin rod of constant cross-section whose surface, except for the 
ends, is insulated against the flow of heat  Although, it is formally a correct 
model, the practical application of it is very limited.  But there is another 
interpretation of a 1-D model, which is more reliable. 

Consider a 3-D wall with finite dimension in the x-direction (within 0=x  
and Lx = ) and elongated dimensions (may be infinite) in y- and z-
directions.  If the conditions at the walls 0=x  and Lx =  are uniform, and 
the initial condition is independent of variables y and z, then the variation of 
temperature in the y- and z-directions is negligible (no heat flux in these 
directions) 

      0=
∂
∂

=
∂
∂

z
u

y
u   

 and the heat equation becomes 1-D 

      
2

2

u 1 u
tx α

∂ ∂
=

∂∂
   

   It defines the variation of temperature along any line perpendicular to the wall.   

( )0u x

( )
L

a 0
0

1u u x dx
L

= ∫

t 60=

t 300=

t 60  sec=

t 600=
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  Example 2         Dirichlet-Robin  Problem 
 

   

          
2

2

u 1 u
tx α

∂ ∂
=

∂∂
               ( )t,xu :   ( )x 0,L∈ ,   0t >  

 
                                              Initial condition:   ( ) ( )0u x,0 u x=  
   
          Boundary conditions:  [ ]x 0u 0

=
=                 (Dirichlet) 

                
x L

u Hu 0
dx =

∂ + =  
  (Robin)   

k
hH =   

 
           
 
 
Separation of variables:     ( ) ( ) ( )u x,t X x T t=  
 
          X X 0µ′′ − =  T T 0αµ′ − =  
     
Boundary conditions :      0x =  ( ) ( ) 0tT0X =     ⇒    ( ) 00X =  
 
          Lx =  ( ) ( ) ( ) ( ) 0tTLHXtTLX =+′  ⇒   ( ) ( ) 0LHXLX =+′  

 
Solution of Sturm-Liouville problem:   2

n nµ λ= −         
     

          ( )n nX sin xλ=  n 1,2,...=   

          where eigenvalues  nλ  are positive roots of the characteristic equation: 

          0xsinHLcos =+ λλλ  
 

 
           
 

 
 
 
 
 
 
 

Solution for T(t):       With determined eigenvalues, the solution for T  becomes: 
          ( ) 2

n t
nT t e αλ−=  

 

Solution:        ( ) ( ) 2
n t

n n
n 1

u x,t a sin x e αλλ
∞

−

=

= ∑  

 
This solution satisfies the heat equation and boundary conditions.  We 
want to define coefficients na  in a such a way that the obtained 
solution satisfies also the initial condition at 0t = : 

( ) ( ) ( )n n 0
n 1

u x,0 a sin x u xλ
∞

=

= =∑  

nλ

λ

( )0u x

( )u x,t

0 L
x

[ ]x Lu Hu 0
=

′ + =

( )u 0 0=
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In our problem, functions ( ) ( ){ }n nX x sin xλ=  are obtained as 
eigenfunctions of the Sturm-Liouville problem for the equation 

2X X 0λ′′ + = ; therefore, the set of all eigenfunctions is a complete 
system of functions orthogonal with respect to the weight function 

1p = .  Then, the last equation is an expansion of the function ( )0u x  
in a generalized Fourier series over the interval ( )L,0  with coefficients 
defined by 

( ) ( )

( )

L

0 n
0

n L
2

n
0

u x sin x dx
a

sin x dx

λ

λ
=

∫

∫
 

 
          Then, the solution of the initial-boundary value problem is given by 

 

          ( )
( ) ( )

( )
( ) 2

n

L

0 n
t0

nL
n 1 2

n
0

u x sin x dx
u x,t sin x e

sin x dx

αλ

λ
λ

λ

∞
−

=

 
 
 =
 
 
 

∫
∑

∫
 

 
          where the squared norm of eigenfunctions may be evaluated after  

integration as   

( ) ( )L
2 n2

n n
n0

sin 2 LLX sin x dx
2 4

λ
λ

λ
= = −∫  

 
 

          Finally, the solution is: 
 
 

            ( )
( ) ( )

( ) ( ) 2
n

L

0 n
t0

n
n 1 n

n

u x sin x dx
u x,t sin x e

sin 2 LL
2 4

αλ

λ
λ

λ
λ

∞
−

=

 
 
 =
 

− 
  

∫
∑   
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MAPLE:   Let 2L = , H 3= , ( ) ( )0u x x 2 x= − , 0.0625α =    
 

> restart; 

> with(plots): 
 

> L:=2;H:=3;A:=0.0625; 
 := L 2  

 := H 3  

 := A 0.0625  
Characteristic equation: 

> w(x):=x*cos(x*L)+H*sin(x*L); 

 := ( )w x  + x ( )cos 2 x 3 ( )sin 2 x  

> plot(w(x),x=0..10); 

                            
Eigenvalues: 

> n:=1: for m from 1 to 500 do z:=fsolve(w(x)=0,x=m/10..(m+1)/10): 
if type(z,float) then lambda[n]:=z: n:=n+1 fi od: 
> for i to 5 do lambda[i] od; 

1.358229874  

2.768911636  

4.235147453  

5.738636645  

7.264403196  

> N:=n-1; 
 := N 32  

> n:='n':i:='i': 
 

Eigenfunctions: 
> X[n]:=sin(lambda[n]*x); 

 := Xn ( )sin λn x  

Squared-norm: 
> NX[n]:=int(X[n]^2,x=0..L); 

 := NXn
1
2

−  + ( )cos 2 λn ( )sin 2 λn 2 λn

λn

 

Initial condition: 
> u0(x):=x*(L-x)+1; 

 := ( )u0 x  + x ( ) − 2 x 1  

Fourier coefficients: 
> a[n]:=simplify(int(u0(x)*X[n],x=0..L)/NX[n]); 

 := an −
2 ( ) +  +  −  − 2 λn ( )sin 2 λn λn

2
( )cos 2 λn 2 ( )cos 2 λn 2 λn

2

λn
2

( )−  + ( )cos 2 λn ( )sin 2 λn 2 λn  
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Solution - Generalized Fourier series: 

> u(x,t):=sum(a[n]*X[n]*exp(-lambda[n]^2*t/A^2),n=1..N): 
> plot3d(u(x,t),x=0..L,t=0..30,axes=boxed,style=wireframe); 

 
 
> animate({u0(x),u(x,t)},x=0..L,t=0..50,frames=200,axes=boxed); 

 

 
 
> u(x,0):=subs(t=0,u(x,t)): 
> u(x,1):=subs(t=1,u(x,t)): 
> u(x,5):=subs(t=5,u(x,t)): 
> u(x,10):=subs(t=10,u(x,t)): 
> u(x,20):=subs(t=20,u(x,t)): 
> plot({u0(x),u(x,0),u(x,1),u(x,5),u(x,10),u(x,20)},x=0..L); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )0u x

( )u x,t

t 0=

t 1=

t 5=

t 10=

 t
t 20=

( )u x,t

( )u x,t

t
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  VIII.3.1.2 GENERAL CASE            Non-Homogeneous Equation, Non-Homogeneous Boundary Conditions 
 

   

          ( )
2

2

u 1 uF x
tx α

∂ ∂
+ =

∂∂
    ( )t,xu ,  ( )x 0,L∈ ,  0t >     

 
                                              Initial condition:   ( ) ( )xuxu 00, =    
   
          Boundary conditions:  [ ] 1x 0u g

=
= , 0t >         (I, II or IIIrd kind) 

                [ ] 2x Lu g
=

= , 0t >         (I, II or IIIrd kind) 
  
 
  I  Steady State Solution   Definition  A time-independent function which satisfies the heat  

equation and boundary conditions  obtained as 

                ( ) ( )t,xulimxu
ts ∞→

=  

              is called a steady state solution 
 

Substitution of a time-independent function into the heat equation leads 
to the following ordinary differential equation: 

( )
2

s
2

u
F x 0

x
∂

+ =
∂

    ( )su x ,  ( )x 0,L∈   

 
                                              subject to the boundary conditions of the same kind as for PDE:  
  
          [ ]s 1x 0

u g
=

= , 0t >         (I, II or IIIrd kind) 

          [ ]s 2x L
u g

=
= , 0t >         (I, II or IIIrd kind) 

  
General solution of ODE:  
 

( ) ( )s 1 2u x F x dx dx c x c = − + + ∫ ∫  

 
Solutions of BVPs for plane wall with uniform heat generation are 
provided by the Table. 

 
 

  II Transient Solution:     Define the transient solution by equation: 
 

( ) ( ) ( )xut,xut,xU s−=      
 
then solution of the original problem is a sum of transient solution and 
steady state solution:     

( ) ( ) ( )xut,xUt,xu s+=  

          Substitute it into the Heat Equation: 
                    

          ( )
22

s
2 2

uU 1 UF x
tx x α

∂∂ ∂
+ + =

∂∂ ∂
   

Since  ( )
2

s
2

u
F x 0

x
∂

+ =
∂

,  it yields 

t
Ua

x
U 2
2

2

∂
∂

=
∂
∂   
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We obtained the equation for the new unknown function ( )t,xU  which  
has homogeneous boundary conditions:  

0x =  [ ] [ ] [ ]s 1 1x 0 x 0 x 0
U u u g g 0

= = =
= − = − =  

          Lx =  [ ] [ ] [ ]s 2 2x L x L x L
U u u g g 0

= = =
= − = − =  

As a result, we reduced the non-homogeneous problem to a 
homogeneous equation for ( )t,xU  with homogeneous boundary 
conditions.   Initial condition for function ( )t,xU : 

          ( ) ( ) ( ) ( ) ( )s 0 sU x,0 u x,0 u x u x u x= − = −   
 
Solution for U(x,t)      We consider the following basic initial boundary value problem: 
 

2

2

U 1 U
tx α

∂ ∂
=

∂∂
     ( )t,xU ,  ( )x 0,L∈ , 0t >  

 
                                              initial condition:   ( ) ( ) ( )0 sU x,0 u x u x= −  
   
          boundary conditions:  [ ]x 0U 0

=
= , 0t >   

                [ ]x LU 0
=

=  0t >    
    
 

We already know a solution of this basic problem obtained by 
separation of variables: 

( )U x,t  
2
n t

n n
n 1

a X e αλ
∞

−

=

= ∑  

          where coefficients na  are the Fourier coefficients determined with  
the corresponding initial condition for the function ( )t,xU : 

( ) ( ) ( )

( )

L

0 s n
0

n L
2
n

0

u x u x X x dx
a

X x dx

−  
=

∫

∫
 

 
III  Solution of IBVP: Solution of the original IBVP is a sum of steady state solution and 

transient solution: 
 
    

( )u x,t  ( ) ( )su x U x,t= +  

    ( )
2
n t

s n n
n 1

u x a X e αλ
∞

−

=

= + ∑  

 na   
( ) ( ) ( )

( )

L

0 s n
0

L
2
n

0

u x u x X x dx

X x dx

−  
=

∫

∫
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0 0.5 1 1.5 2
0

1

2

3

 
    Example 3         Dirichlet-Dirichlet problem with a uniform heat generation: 
 

2

2

u 1 uF
tx α

∂ ∂
+ =

∂∂
    ( )t,xu :  ( )x 0,L∈ ,  0t >     

 
                                              Initial condition:   ( ) ( )xuxu 00, =    
   
          Boundary conditions:  ( ) 1u 0,t g=   0t >         (Dirichlet) 

                ( ) 2u L,t g=    0t >         (Dirichlet) 
 
 
          1) Steady State Solution: 
 
          Let F const= , then integrating the equation twice, we come up with  
          the following solution:   

s
1

u
F x c

x
∂

= − +
∂

 

          2
s 1 2

Fu x c x c
2

= − + +  

          Apply boundary conditions to determine the constants of integration: 

          0x =  ⇒   12 gc =  

       Lx =  ⇒   2
1 1 2

F L c L g g
2

− + + =      

⇒    2 1
1

g g FLc
L 2
−

= +   

 

              ( ) 2 2 1
s 1

g gF FLu x x x g
2 L 2

− = − + + + 
 

 

 
 
          Example:  F 2= , 1g1 = , 2g2 = , 2L =  
                            

 
 
 
 
 
 
 
 
 
 
 
 
2) Transient Problem: 

2

2

U 1 U
tx α

∂ ∂
=

∂∂
     ( )t,xU :  ( )x 0,L∈ , 0t >  

                                               initial condition:   ( ) ( ) ( )0 sU x,0 u x u x= −  

           boundary conditions:  ( )U 0,t 0=     (Dirichlet) 

                 ( )U L,t 0=     (Dirichlet) 
    

( ) 2
s

5u x x x 1
2

steady state solution

= − + +



Chapter VIII  PDE                                  VIII.3  Transient Initial-Boundary Value Problems                                November 4, 2023                   
 

627 

Solution of this basic problem (Dirichlet-Dirichlet) obtained by 
separation of variables: 

n
n
L
πλ = , ( )n

nX x sin x
L
π =  

 
 

( )U x,t  
2
n t

n n
n 1

a X e αλ
∞

−

=

= ∑  
2 2

2
n t
L

n
n 1

na sin x e
L

α ππ∞ −

=

 =  
 

∑  

           where coefficients na  are the Fourier coefficients determined by  
the corresponding initial condition for the function ( )t,xU : 

( ) ( ) ( )

( )
( ) ( )

L

0 s n L
0

n 0 sL
2 0
n

0

u x u x X x dx
2 na u x u x sin x dx
L L

X x dx

π
−    = = −      

∫
∫

∫
 

3)  Solution of  IBVP: 
Return to the original function ( )u x,t :       

  ( ) ( ) ( ) ( )
2 2

2
n t
L

s s n
n 1

nu x,t U x,t u x u x a sin x e
L

α ππ∞ −

=

 = + = +  
 

∑   

 
Then the solution of the non-homogeneous heat equation with non-
homogeneous Dirichlet boundary conditions becomes: 

            
                          

( ) ( )
2 2

2
nL t

2 2 1 L
1 0 s

n 1 0

g gF FL 2 n nu( x,t ) x x g u x u x sin x dx sin x e
2 L 2 L L L

α ππ π∞ −

=

  −       = − + + + + −                 
∑ ∫  

 
 
 

Remark:     In practice, instead of the exact solution defined by the infinite 
series, the truncated series is used for calculation of the 
approximate solution.  How many terms are needed in the 
truncated series for the accurate approximation?  Comparison of 
the exact solution (which is also a truncated series but with a very 
large number of terms, which we assume, provides an accurate 
result) with the calculation with a small number of terms in a 
truncated series shows that the accuracy depends on time: the 
further we proceed in time, the more accurate becomes an 
approximate solution (why?).  For uniform characterization of 
physical processes, the non-dimensional parameters are used in 
engineering. In heat transfer, non-dimensional time is defined by 
the Fourier number:  

 

                 2

tFo
L
α

=  

 
           where α  is the thermal diffusivity.  
 

In engineering heat transfer analysis, a 4 term approximation is 
considered as an accurate approximation for all values of the 
Fourier number.  For simplicity, very often even a 1 term 
approximation is used, which is considered to be accurate for 
Fo 0.2>  (error in most cases does not exceed 1%, and this is a 
convention in engineering heat transfer).    
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Consider comparison of the exact solution (100 terms) with 1 and 4 terms 
approximations.   

 
Results are calculated for: 

Fo 0.0=  

Fo 0.05=   

Fo 0.2=   

Fo 0.4=    
 

The lowest curve is a steady state solution.   
 

As can be seen from the figure, for Fo 0.2> , all results coincide.  
 
 
 

                                                                 
   
                                  
 
 
                                     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fo 0.2>  is generally adopted [see Incroper and De Witt] as a condition 
for application one term approximation:  

 
one-term solution becomes accurate for Fo 0.2> .  
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  VIII.3.2.1   HEAT EQUATION  in  CARTESIAN COORDINATES   2-D  
 
General Problem: 

                  

         ( )
2 2

2 2

u u 1 uF x, y
tx y α

∂ ∂ ∂
+ + =

∂∂ ∂
             ( )t,y,xu :    ( ) ( ) ( )M,0L,0y,x ×∈     

0t >     
 
                                             Initial Condition:    ( ) ( )y,xu0,y,xu 0=  ( ) [ ] [ ]x, y 0,L 0,M∈ ×  
   
         Boundary Conditions: 0x =  [ ] ( )3x 0u f y

=
=   ( )M,0y ∈  0t >  

              Lx =  [ ] ( )4x Lu f y
=

=   ( )M,0y ∈  0t >  

              0y =  [ ] ( )1y 0u f x
=

=   ( )L,0x ∈   0t >  

              My =  [ ] ( )2y Mu f x
=

=   ( )L,0x ∈   0t >  

 
 
1.  Steady State Solution Find time-independent solution ( )y,xus .  We are looking for a steady 

state solution which satisfies the differential equation:  

    ( )
2 2

s s
2 2

u u
F x, y 0

x y
∂ ∂

+ + =
∂ ∂

    

and the boundary conditions of the same type as in the general problem 

              0x =  [ ] ( )s 3x 0
u f y

=
=   ( )M,0y ∈  0t >  

              Lx =  [ ] ( )s 4x L
u f y

=
=   ( )M,0y ∈  0t >  

              0y =  [ ] ( )s 1y 0
u f x

=
=   ( )L,0x ∈   0t >  

              My =  [ ] ( )s 2y M
u f x

=
=   ( )L,0x ∈   0t >  

           
This is the BVP for Poisson’s Equation for which, in general, all 
boundary conditions are non-homogeneous.  The superposition 
principle should be used to reduce the problem to the set of 
supplemental basic problems (see VIII.3.4, p.597). 

 
 
2.  Transient Solution (Basic Case)  Introduce the transient function as 

              ( ) ( ) ( )y,xut,y,xut,y,xU s−=  

It can be verified that function U satisfies homogeneous Heat Equation 

    
2 2

2 2

U U 1 U
tx y α

∂ ∂ ∂
+ =

∂∂ ∂
 

with four homogeneous boundary conditions (of the same type):  

              0x =  [ ]x 0U 0
=

=    ( )M,0y ∈  0t >  

              Lx =  [ ]x LU 0
=

=    ( )M,0y ∈  0t >  

              0y =  [ ]y 0U 0
=

=    ( )L,0x ∈   0t >  

              My =  [ ]y MU 0
=

=    ( )L,0x ∈   0t >  

          and the initial condition:  

              ( ) ( ) ( ) ( )0 s 0U x, y,0 u x, y u x, y   U x, y= − ≡  

[ ] ( )1y 0u f x
=

=
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Separation of variables – 1st stage: We assume that the function ( )t,y,xU  can be written as a product of 
two functions 
    ( ) ( ) ( )U x, y,t x, y T tΦ=  

where ( )x, yΦ  is the function of space variables.  Substitute it into the  
Heat Equation 

    
2 2

2 2

1T T T
x y
Φ Φ Φ

α
∂ ∂ ′+ =
∂ ∂

 

          Divide equation by TΦ : 

              

2 2

2 2 1 Tx y
T

Φ Φ

Φ α

∂ ∂
+

′∂ ∂
=  

          or using Laplacian operator 

              
2 1 T

T
Φ

Φ α
′∇

=  

          Left hand side is a function of space variables only and the right hand  
side is a function of the time variable, therefore, they have to be equal 
to a constant (separation constant): 

              
2 1 T

T
Φ β

Φ α
′∇

= =  

          Boundary conditions for separated functions are: 

[ ] [ ] ( )x 0 x 0U T t 0Φ
= =

= =  ( )M,0y ∈  0t >  ⇒  [ ]x 0 0Φ
=

=  

          [ ] [ ] ( )x L x LU T t 0Φ
= =

= =  ( )M,0y ∈  0t >  ⇒  [ ]x L 0Φ
=

=  

          [ ] [ ] ( )y 0 y 0U T t 0Φ
= =

= =  ( )L,0x ∈   0t >  ⇒  [ ]y 0 0Φ
=

=   

          [ ] [ ] ( )y M y MU T t 0Φ
= =

= = ( )L,0x ∈   0t >  ⇒  [ ]y M 0Φ
=

=  

There are four homogeneous boundary conditions for the function Φ .   

From the separated equations, consider the equation 

Helmholtz Equation           2Φ βΦ∇ =  

which has a structure of equation of the eigenvalue problem for 
differential operator 2∇ .  It is called the Helmholtz Equation.   

The solution of the Helmholtz Equation subject to boundary conditions 
can be easily obtained by the eigenfunction expansion method. 

Separation of variables – 2nd stage:   Assume   ( ) ( ) ( )x, y X x Y yΦ =  
          Substitute into the Helmholtz Equation 
              ( )2 XY X Y XY XYζ′′ ′′∇ ≡ + =  
          Divide by XY  

              X Y
X Y

β
′′ ′′

+ =  

          Separation of variables in the boundary conditions yield: 

( )M,0y ∈   [ ] ( ) ( )x 0 X 0 Y y 0Φ
=

= =    ⇒  [ ]x 0X 0
=

=  

          ( )M,0y ∈   [ ] ( ) ( )x L X L Y y 0Φ
=

= =    ⇒  [ ]x LX 0
=

=  

          ( )L,0x ∈    [ ] ( ) ( )y 0 X x Y 0 0Φ
=

= =    ⇒  [ ]y 0Y 0
=

=   

          ( )L,0x ∈    [ ] ( ) ( )y M X x Y M 0Φ
=

= =    ⇒  [ ]y MY 0
=

=  

Note, that we have complete pairs of homogeneous boundary 
conditions both for X  and Y . 
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          Now, solve consequently the Sturm-Liouville problems for X  and Y : 

              X Y
X Y

β µ
′′ ′′

= − + =  

          Equation is separated. It yields first SLP: 
 
          X X 0µ′′ − =      

          [ ]x 0X 0
=

=    
SLP

⇒   2
nµ λ= −  n 1,2,...=  

          [ ]x LX 0
=

=      ( )nX x  
 
          Then the second equation becomes: 

          2
n

Y
Y

β λ
′′

− + = −  

          which in its turn is a separated equation: 

          2
n

Y
Y

β λ η
′′

= + =  

          It yields the second Sturm-Liouville Problem: 
 
          Y Y 0η′′ − =      

          [ ]y 0Y 0
=

=   
SLP

⇒   2
mη ν= −   m 1,2,...=  

          [ ]y MY 0
=

=     ( )mY y  

 
          Equation for separation constants yields: 
          2 2

n mβ λ ν+ = −  ⇒  ( )2 2
n mβ λ ν= − +  

 
          Then equation for T becomes 

          ( )2 2
n m

1 T
T

β λ ν
α

′
= = − +  

          Which is the 1st order ordinary differential equation: 
          ( )2 2

n mT T 0α λ ν′ + + =  
          with the solutions:  

          ( ) ( )2 2
n m t

nmT t e α λ ν− +
=  

 
Solution of the Transient Problem: Construct the solution in the form of double infinite series 

(eigenfunction expansion):  
 

             ( ) ( )2 2
n m t

nm n m
n m

U x, y,t A X Y e α λ ν− +
= ∑∑  

 

          Where the coefficients nmA  can be found from the initial condition 

          ( ) ( )0 nm n m
n m

U x, y,0 U x, y A X Y= = ∑∑  

          as the Fourier coefficients of the double Generalized Fourier series: 
 
 

             
( ) ( ) ( )

M L

0 n m
0 0

nm 2 2
n m

U x, y X x Y y dxdy
A

X Y
=

∫ ∫
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Example: DDNN                   

          
2 2

2 2

u u 1 u
tx y α

∂ ∂ ∂
+ =

∂∂ ∂
             ( )t,y,xu :  ( ) ( ) ( )M,0L,0y,x ×∈  , 0t >   

  
 
                                             Initial Condition:  ( ) ( )y,xu0,y,xu 0=  
   
         Boundary Conditions:  
 

0x =    [ ]x 0u 0
=

=   ( )M,0y ∈  0t >  (Dirichlet) 

Lx =    [ ] ( )4x Lu f y
=

=  ( )M,0y ∈  0t >  (Dirichlet) 

          0y =    
y 0

u 0
y =

 ∂
= ∂ 

  ( )L,0x ∈   0t >  (Neumann) 

          My =    
y M

u 0
y =

 ∂
= ∂ 

 ( )L,0x ∈   0t >  (Neumann) 

 
 
1.  Steady State Solution Find time-independent solution ( )y,xus :   

2 2
s s

2 2

u u
0

x y
∂ ∂

+ =
∂ ∂

    

subject to the boundary conditions: 

          0x =  [ ]s x 0
u 0

=
=   ( )M,0y ∈  0t >  

          Lx =  [ ] ( )s 4x L
u f y

=
=  ( )M,0y ∈  0t >  

          0y =  s

y 0

u
0

y =

∂ 
= ∂ 

 ( )L,0x ∈   0t >       

          My =  s

y M

u
0

y =

∂ 
= ∂ 

 ( )L,0x ∈   0t >        

This is the basic problem for Laplace’s Equation when, three boundary 
conditions are non-homogeneous.   
 
Separation of variables: ( )su x, y XY=  

          0x =  [ ]s x 0
u 0

=
=    ⇒  ( )X 0 0=  

          Lx =  [ ] ( )s 4x L
u f y

=
=   

          0y =  s

y 0

u
0

y =

∂ 
= ∂ 

  ⇒  ( )Y 0 0′ =       

          My =  s

y M

u
0

y =

∂ 
= ∂ 

  ⇒  ( )Y M 0′ =  

          Separated equation: 

          Y X
Y X

µ
′′ ′′

= − =  

          First, consider equation for Y  (two conditions): 

          Y Y 0µ′′ − =    2
nµ λ= −  

          ( )Y 0 0′ =   
SLP
⇒  0 0λ =   0Y 1=  

          ( )Y M 0′ =    n
n
M
πλ =      ( ) ( )n n

nY y cos y cos y
M
πλ  = =  

 
 

[ ] ( )1y 0u f x
=

=
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          Then equations for X :  
          0X 0′′ =      ⇒  ( )0 1 2X x c c x= +  

          2
n nX X 0λ′′ − =    ⇒  ( ) ( ) ( )n 1 n 2 nX x c cosh x c sinh xλ λ= +  

          Boundary condition at x 0=  yields  
          ( )0 1 2 1X 0 0 c c 0 c= = + ⋅ =  ⇒  1c 0=  

          ( )n 1 2 1X 0 0 c 1 c 0 c= = ⋅ + ⋅ =  ⇒  1c 0=  
          Then 
          ( )0X x x=  

          ( )n
nX x sinh x
M
π =  

 
 

          Construct the steady state solution as 

          ( )su x, y 0 0 0 n n n
n 1

a X Y a X Y
∞

=

= + ∑    0 n
n 1

n na x a sinh x cos y
M M
π π∞

=

   = +    
   

∑  

          This solution should satisfy the boundary condition at x L= : 
 

          ( ) ( )s 3u L, y f y=  0 n
n 1

n na L a sinh L cos y
M M
π π∞

=

   = +    
   

∑  

          Which is a cosine Fourier series expansion of ( )3f y  with 

          ( )
M

0 3
0

1a f y dy
LM

= ∫  

          ( )
M

n 3
0

2 na f y cos y dy
n MM sinh L
M

π
π

 =     
 
 

∫  

          Then the steady state solution becomes: 
           

   ( )su x, y  ( ) ( )
M M

3 3
n 10 0

1 2 n n nf y dy x f y cos y dy sinh x cos y
nLM M M MM sinh L
M

π π π
π

∞

=

 
         = +                    

∑∫ ∫  

 
 
2.  Transient Solution      Introduce the transient function as 

              ( ) ( ) ( )y,xut,y,xut,y,xU s−=  

Function U satisfies homogeneous Heat Equation 

    
2 2

2 2

U U 1 U
tx y α

∂ ∂ ∂
+ =

∂∂ ∂
 

with four homogeneous boundary conditions:  

              0x =  [ ]x 0U 0
=

=    ( )M,0y ∈  0t >  

              Lx =  [ ]x LU 0
=

=    ( )M,0y ∈  0t >  

              0y =  
y 0

U 0
y =

 ∂
= ∂ 

  ( )L,0x ∈   0t >  

              My =  
y M

U 0
y =

 ∂
= ∂ 

  ( )L,0x ∈   0t >  

          and the initial condition:  

              ( ) ( ) ( ) ( )0 s 0U x, y,0 u x, y u x, y   U x, y= − ≡  
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          Separation of variables U XYT=  yields a separated equation 

              X Y 1 T
X Y T

β
α

′′ ′′ ′
+ = =  

          with homogeneous boundary conditions: 

          0x =  [ ]x 0U 0
=

=    ⇒  ( )X 0 0=  

          Lx =  [ ]x LU 0
=

=    ⇒  ( )X L 0=  

          0y =  
y 0

U 0
y =

 ∂
= ∂ 

  ⇒  ( )Y 0 0′ =       

          My =  
y M

U 0
y =

 ∂
= ∂ 

  ⇒  ( )Y M 0′ =  

          Solve consequently the Sturm-Liouville problems for X  and Y : 

              X Y
X Y

β µ
′′ ′′

= − + =  

           
          X X 0µ′′ − =      

          [ ]x 0X 0
=

=    
DD

⇒   2
nµ λ= − ,  n

n
L
πλ = , n 1,2,...=  

          [ ]x LX 0
=

=      ( ) ( )n n
nX x sin x sin x
L
πλ  = =  

 
 

 
          Then the second equation becomes: 

          2
n

Y
Y

β µ λ
′′

− + = = −  

          which in its turn is a separated equation: 

          2
n

Y
Y

β λ η
′′

= + =  

          It yields the second Sturm-Liouville Problem: 
 
          Y Y 0η′′ − =     2

mη ν= −   m 0,1,2,...=  

          [ ]y 0Y 0
=

′ =   
NN

⇒   0 0ν =     ( )0Y y 1=  

          [ ]y MY 0
=

′ =     m
m
M
πν =    ( )m

mY y cos y
M
π =  

 
  

 
          Equation for separation constants yields: 
          2 2

n mβ λ η ν+ = = −  ⇒  ( )2 2
n mβ λ ν= − +  

          Then equation for T becomes 

          ( )2 2
n m

1 T
T

β λ ν
α

′
= = − +  

          Which is the 1st order ordinary differential equation: 
          ( )2 2

n mT T 0α λ ν′ + + =  
          with the solutions:  

          ( ) ( )2 2
n m t

nmT t e α λ ν− +
=  

 
Solution of the Transient Problem: Construct the solution in the form of double infinite series 

(eigenfunction expansion):  

          ( ) ( )2 22 n mn
tt

n0 n 0 nm n m
n 1 n 1 m 1

U x, y,t A X Y e A X Y e α λ ναλ
∞ ∞ ∞ − +−

= = =

= +∑ ∑ ∑  
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          Where the coefficients nmA  can be found from the initial condition: 
 

          ( ) ( )0 n0 n 0 nm n m
n 1 n 1 m 1

U x, y,0 U x, y A X Y A X Y
∞ ∞ ∞

= = =

= = +∑ ∑ ∑  

          ( )0 n0 n 0 nm n m
n 1 m 1 n 1

U x, y A X Y A X Y
∞ ∞ ∞

= = =

   = +      
∑ ∑ ∑  

          where 

          ( )
M

n0 n 0
n 1 0

1A X U x, y dy
M

∞

=

  =  
∑ ∫  

          ( ) ( )
M

nm n 0 m
n 1 0

2A X U x, y Y y dy
M

∞

=

  =  
∑ ∫  

          Then 

           ( ) ( )
L M

n0 0 n
0 0

2A U x, y X x dydx
LM

= ∫ ∫  

           ( ) ( ) ( )
M L

nm 0 n m
0 0

4A U x, y X x Y y dxdy
LM

= ∫ ∫  

 
 
3.  Solution of IBVP  ( )t,y,xu  ( ) ( )y,xut,y,xU s+=  

 
 

( )t,y,xu  ∑∑
∞

=

∞

=











+−















=

0m 1n

t
a
1

M
m

L
n

mn

22

22

2

22

ey
M
mcosx

L
nsinA

ππ
ππ  

 

              0 m
m 1

m ma x a sinh x cos y
M M
π π∞

=

   + +    
   

∑  

 
 
           where coefficients are 
 

           n0A   ( ) ( )[ ]∫ ∫ 





−=

L

0

M

0
s dydxx

L
nsiny,xuy,xg

LM
2 π  

 

           mnA  ( ) ( )[ ] dydxy
L

nsiny
M
mcosy,xuy,xg

LM
4 L

0

M

0
s 














−= ∫ ∫

ππ  

 

     0a   ( )dyyf
LM

1 M

0
∫=  

 

           ma   ( )
M

0

2 mf y cos y dy
m MM sinh L
M

π
π

 =     
 
 

∫  
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4.  Maple Example:   heat5dn-2.mws  2L = , 4M = , 5.0=α , ( ) 1yf = , ( ) ( ) ( )MyyLxxy,xg −+−=   
 
2-D Heat Equation      Example  DD-NN 
> restart;  
> with(plots): 
> L:=2;M:=4;alpha:=0.5; 

 := L 2  

 := M 4  

 := α 0.5  

> f(y):=1; 
 := ( )f y 1  

> plot(f(y),y=0..M,axes=boxed);  

 
 
> u0(x,y):=x*(x-L)*y*(y-M); 

 := ( )u0 ,x y x ( ) − x 2 y ( ) − y 4  

> plot3d(u0(x,y),x=0..L,y=0..M,axes=boxed); 

 
Steady State Solution: 
 
> a[0]:=int(f(y),y=0..M)/L/M; 

 := a0
1
2

 

> a[m]:=2/M*int(f(y)*cos(m*Pi*y/M),y=0..M)/sinh(m*Pi*L/M); 

 := am
2 ( )sin m π

m π 





sinh m π

2

 

> us[m](x,y):=a[m]*sinh(m*Pi*x/M)*cos(m*Pi*y/M): 
> us(x,y):=a[0]*x+sum(us[m](x,y),m=1..2): 
> plot3d(us(x,y),x=0..L,y=0..M,axes=boxed,projection=0.92); 

 
 

( ) ( ) ( )0u x, y x x L y y M= − + −

initial temperature distribution 

function in non-homogeneous boundary condition

[ ] ( )4x Lu f y
=

=

( )s

steady state solution
           u x, y
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> plot3d({us(x,y),u0(x,y)},x=0..L,y=0..M,axes=boxed,style=wireframe); 

 
Transient Solution: 
 
> U0(x,y):=u0(x,y)-us(x,y); 

 := ( )U0 ,x y  − x ( ) − x 2 y ( ) − y 4 x
2

 

> A[n,0]:=2*int(int(U0(x,y),y=0..M)*sin(n*Pi*x/L),x=0..L)/L/M: 
 
> A[n,m]:=4*int(int(U0(x,y)*cos(m*Pi*y/M),y=0..M)*sin(n*Pi*x/L),x=0..L)/L/M: 
 
> U[n,0](x,y,t):=A[n,0]*sin(n*Pi*x/L)*exp(-n^2/L^2*Pi^2*t*alpha): 
 
> U[n,m](x,y,t):=A[n,m]*sin(n*Pi*x/L)*cos(m*Pi*y/M)*exp(-  
 (m^2/M^2+n^2/L^2)*Pi^2*t*alpha): 
 
> 
U(x,y,t):=sum(U[n,0](x,y,t),n=1..10)+sum(sum(U[n,m](x,y,t),m=1..10),n=1..10): 
 
> U(x,y,0):=subs(t=0,U(x,y,t)): 
 
Solution of IBVP: 
 
> u(x,y,t):=us(x,y)+U(x,y,t): 
 
> u(x,y,0):=subs(t=0,u(x,y,t)): 
 
> animate3d(u(x,y,t),x=0..L,y=0..M,t=0..3,frames=100,axes=boxed); 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )s

steady state solution
           u x, y

( )0

initial temperature 
distribution u x, y
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                       THE HEAT EQUATION      3-D Cartesian Coordinates 
                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
               
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

( )TRANSIENT PROBLEM basic

( ) ( ) ( ) ( ) 3x, y,z 0,L 0,M 0,K , t 0∈ × × ⊂ >

( ) ( )2 2 2
n m k t

nmk n m k
n m k

U x, y,z,t  B  X Y Z  e α λ ν ω− + +
= ∑∑∑

( )
K M L

0 s n m k
0 0 0

nmk 2 2 2
n m k

u u X Y Z dx dy dz
B

X Y Z

−
=

∫ ∫ ∫

t 0>

STEADY STATE PROBLEM -  PELE

( ) ( ) ( )ssu x, y,z,t u x, y,z U x, y,z,t= +

TRANSIENT SOLUTION

( )
2 2 2

2 2 2

u u u 1 uF x, y,z
tx y z α

∂ ∂ ∂ ∂
+ + + =

∂∂ ∂ ∂

[ ] Su f=

[ ] ( )0t 0u u x, y,z
=

=

2 2 2

2 2 2

U U U 1 U
tx y z α

∂ ∂ ∂ ∂
+ + =

∂∂ ∂ ∂

[ ]
0

0 sst tU u u
=

= −

( )
2 2 2

ss ss ss
2 2 2

u u u
F x, y,z 0

x y z
∂ ∂ ∂

+ + + =
∂ ∂ ∂

[ ]ss S
u f=

( ) ( ) ( )U x, y,z,t x, y,z T tΦ=

2Φ β Φ∇ =
1 T

T
β

α
′

=

( )2 2 2
nmk n m kβ λ ν ω= − + +

( )2 2 2
n m k tT e α λ ν ω− + +

=

( ) ( ) ( )ssu x, y,z,t    u x, y,z   U x, y,z,t= +

HELMHOLTZ EQUATION

SEPARATION OF VARIABLES   

THE SOLUTION OF THE IBVP   is a superposition of steady-state and transient solutions

[ ] Su f=

2 1 T
T

Φ β
Φ α

′∇
= =

n m k

n m k

,  ,  

X ,  Y ,  Z

λ ν ω

( ) ( ) ( ) ( )x, y,z X x Y y Z zΦ =

[ ] SU 0=

( )ssu x, y,z ( )U x, y,z,t

X Xµ′′ =

2
n nµ λ= −

2
n n nX Xλ′′ = −

( )nX x

[ ]x 0X 0
=

=

[ ]x LX 0
=

=

SLP
⇒

SLP
⇒ 2

k kγ ω= −

( )kZ z

SLP
⇒

Y Yη′′ =

2
m mη ν= −

2
m m mY Yν′′ = −

( )mY y

[ ]y 0Y 0
=

=

[ ]y MY 0
=

=

Z Zγ′′ = 2
k k kZ Zω′′ = −

[ ]z 0Z 0
=

=

[ ]z KZ 0
=

=

supplemental eigenvalue problems

STEADY STATE SOLUTION (PELE)

( )ss 1 2 6u x, y,z  u u ... u= + + + nmk n m k
n m k

A X Y Z+ ∑∑∑

( )

( )

K M L

n m k
0 0 0

mnk 2 2 22 2 2
n m k n m k

F x, y,z X Y Z dx dy dz
A

X Y Zλ ν ω
=

+ +

∫ ∫ ∫

( ) [ ] [ ] [ ] 3x, y,z 0,L 0,M 0,K∈ × × ⊂ 

( )u x, y,z,t

where

where

six basic 
problems

ku 6ukf 00 0

t 0=

2

Laplace Eqn
u 0∇ = 2

Poisson Eqn
u F 0∇ + =

( )ssu x, y,z  solution of six basic problems for Laplace's Equation
plus solution of Poisson's equation with zero b.c.'s

=
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  VIII.3.2.2   3-D TRANSIENT PROBLEM.   HELMHOLTZ EQUATION.   
 

Consider transient problem from the solution of the 3-D Heat Equation 

          
2 2 2

2 2 2

U U U 1 U
tx y z α

∂ ∂ ∂ ∂
+ + =

∂∂ ∂ ∂
    ( ) ( ) ( ) ( )x, y,z 0,L 0,M 0,K∈ × ×  , 0t >   

          Separation of variables: 

          ( ) ( ) ( )U x, y,z,t x, y,z T tΦ=  

          Separated equation: 

          

2 2 2

2 2 2 1 Tx y z
T

Φ Φ Φ

β
Φ α

∂ ∂ ∂
+ +

′∂ ∂ ∂
= =  

          Separated equation yields the Helmholtz Equation: 

Helmholtz Equation          2Φ β Φ∇ =  

which constitutes the eigenvalue problem for differential operator 2∇ .   

The solution of the Helmholtz Equation subject to boundary conditions 
can be easily obtained by the eigenfunction expansion method. 

          Assume    
( ) ( ) ( ) ( )x, y,z X x Y y Z zΦ =  

           
Substitute into the Helmholtz Equation 

              ( )2 XYZ X YZ XY Z XYZ XYZβ′′ ′′ ′′∇ ≡ + + =  
          Divide by XYZ  

              X Y Z
X Y Z

β
′′ ′′ ′′

+ + =  

 
          Separation of variables in the boundary conditions yields: 

x 0=   [ ] ( ) ( ) ( )x 0 X 0 Y y Z z 0Φ
=

= =    ⇒   [ ]x 0X 0
=

=  

          x L=   [ ] ( ) ( ) ( )x L X L Y y Z z 0Φ
=

= =    ⇒   [ ]x LX 0
=

=  

          y 0=    [ ] ( ) ( ) ( )y 0 X x Y 0 Z z 0Φ
=

= =    ⇒   [ ]y 0Y 0
=

=  

          y M=    [ ] ( ) ( ) ( )y M X x Y M Z z 0Φ
=

= =    ⇒   [ ]y MY 0
=

=  

          z 0=    [ ] ( ) ( ) ( )z 0 X x Y y Z 0 0Φ
=

= =    ⇒   [ ]z 0Z 0
=

=  

          z K=    [ ] ( ) ( ) ( )z K X x Y y Z K 0Φ
=

= =    ⇒   [ ]z KZ 0
=

=  
 

Note, that we have complete pairs of homogeneous boundary 
conditions for X , Y  and Z . 
 

          Solve consequently the Sturm-Liouville problems for X , Y , and Z  : 

              X Y Z
X Y Z

β µ
′′ ′′ ′′

= − − + =  

[ ] ( ) 
0t 0U U x, y,z

=
=

initial condition:

[ ] I ,II , or III

SU 0=

all boundary conditions
are homogeneous

x

y

z

0

K

M

L
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Supplemental Eigenvalue problems  The first Sturm-Liouville Problem: 
 
          X X 0µ′′ − =      

          [ ]x 0X 0
=

=    
SLP

⇒   2
nµ λ= −  ( )n 0 ,1,2,...=  

          [ ]x LX 0
=

=      ( )nX x  
 
          Then the equation becomes: 

          2
n

Y Z
Y Z

β µ λ
′′ ′′

− − + = = −  

          which in its turn is a separated equation: 

          2
n

Y Z
Y Z

β λ η
′′ ′′

= − + + =  

          It yields the second Sturm-Liouville Problem: 
 
          Y Y 0η′′ − =      

          [ ]y 0Y 0
=

=   
SLP

⇒   2
mη ν= −   ( )m 0 ,1,2,...=  

          [ ]y MY 0
=

=     ( )mY y  

           
          Then one more step produces equation 

          2 2
n m

Z
Z

β λ ν
′′

− + + = −  

          which also can be separated 

          2 2
n m

Z
Z

β λ ν γ
′′

= + + =  

          It yields the third Sturm-Liouville Problem:  
 
          Z Z 0γ′′ − =      

          [ ]z 0Z 0
=

=   
SLP

⇒   2
kγ ω= −   ( )k 0 ,1,2,...=  

          [ ]z KZ 0
=

=     ( )kZ z  
 
          Then the second part of the last equation becomes 

          2 2 2
n m kβ λ ν ω+ + = −  

          and the constant of separation is 
 
          ( )2 2 2

nmk n m kβ λ ν ω= − + +  
 
 
          Then the solution of the Basic IBVP for the Heat Equation is: 
 

Solution of Basic IBVP:     ( ) ( ) ( ) ( ) ( )2 2 2
n m k t

nmk n m k
n m k

U x, y,z,t B X x Y y Z z e α λ ν ω− + +
= ∑∑∑  

          where the coefficients nmkB  can be found from the initial condition 
          as the Fourier coefficients of the triple Generalized Fourier Series: 
 

          
( ) ( ) ( ) ( )

K M L

0 n m k
0 0 0

nmk 2 2 2
n m k

U x, y,z X x Y y Z z dxdydz
B

X Y Z
=

∫ ∫ ∫
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  VIII.3.3.     HEAT EQUATION IN CYLINDRICAL COORDINATES 

 
  VIII.3.3.1   LONG SOLID CYLINDER long solid cylinder with angular symmetry:   
 
 

BASIC CASE         Homogeneous Equation and Boundary Conditions 
 
 

          
2

2

u 1 u 1 u
r r tr α

∂ ∂ ∂
+ =

∂ ∂∂
           ( ),u r t :    [ )1r 0,r∈ ,      0t >    

 
                                              Initial condition:   ( ) ( )0u r,0 u r=    
 
   
          Boundary conditions:  ( )u 0,t < ∞    0t >      bounded   
                 

[ ]
1r ru 0

=
=   0t >     (I, II or IIIrd kind) 

                 
 
1) Separation of variables:    ( ) ( ) ( )u r,t R r T t=   ( )u r,t    bounded  ⇒         ( )R 0 < ∞   

                ( ) ( )1R r T t 0=     ⇒   [ ]
1r rR 0

=
=  

       

          R 1 R 1 T
R r R T

µ
α

′′ ′ ′
+ = =  separate variables in the equation 

 

2) Sturm-Liouville Problem:    R 1 R
R r R

µ
′′ ′

+ =       

 

  See VII.12, p.509     2 2 2 2r R rR r 0 R 0λ ′′ + + − =      Bessel Equation of 0th order 

          2
n nµ λ= −  n 1,2,...=       are positive roots of   

          ( )0 n 1J r 0λ =         characteristic equation 

          ( ) ( )n 0 nR r J rλ=        Eigenfunctions 

          ( ) ( ) ( ) ( )
1r2 2 2 2

n 0 n 1 1 n 1p
0

R r J r r dr r 2 J rλ λ= =∫      norm 

          ( )p r r=         weight function:   
 
3) Equation for T :      T T 0αµ′ − =  

          2
nT T 0αλ′ + =    ⇒   ( )

2
n t

nT t e αλ−=  
  
 

4) Solution:       ( ) n n n
n 1

u r,t a R T
∞

=

= ∑   ( ) 2
n t

n 0 n
n 1

a J r e αλλ
∞

−

=

= ∑ ,    where 

 

           Initial condition   ( ) ( ) ( )0 n 0 n
n 1

u r,0 u r a J rλ
∞

=

= = ∑     ⇒    na
( ) ( )

( )

1

1

r

0 0 n
0

r
2
0 n

0

u r J r rdr

J r rdr

λ

λ
=

∫

∫
 

u u 0
z θ

∂ ∂
= =

∂ ∂

r

1r

0
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    GENERAL CASE:          Non-Homogeneous Equation,  Non-Homogeneous Boundary Conditions 

 
 
 

         ( )
2

2

u 1 u 1 uF r
r r tr α

∂ ∂ ∂
+ + =

∂ ∂∂
   ( )t,xu :    ( )1r 0,r∈ , 0t >    

 
                                             Initial condition:    ( ) ( )0u r,0 u r=    
   

         Boundary conditions:   ( )u r,t < ∞   0t >        bounded  

                [ ]
1

1r ru f
=

=  0t >     (I, II or IIIrd kind) 

                  
 
 
 

I  Steady State Solution     Time-independent solution  ( )su r  

Substitution of a time-independent function into the heat equation leads 
to the following ordinary differential equation: 

( )
2

s s
2

u u1 F r 0
r rr

∂ ∂
+ + =

∂∂
    ( )su r ,  ( )1r 0,r∈   

                                              subject to the boundary conditions of the same kind as for PDE:  

          [ ]s x 0
u

=
,    0t >         bounded 

          [ ]
1

s 1r r
u f

=
= ,  0t >         (I, II or IIIrd kind) 

General solution of ODE:  

( )su1 r F r 0
r r r

∂∂   + = ∂ ∂ 
 

( )su
r rF r

r r
∂∂   = − ∂ ∂ 

 

 

( )s 1u c1 rF r dr
r r r

∂
= − +  ∂ ∫   

( ) ( )s 1 2
1u r r F r dr dr c ln r c
r

 = − + +    ∫ ∫  

For bounded solution, it is necessarily 1c 0= , therefore the general 
steady state solution in circular domain is   

( ) ( )s 2
1u r rF r dr dr c
r

 = − +    ∫ ∫  

Solutions of BVPs for circular domain with uniform heat generation are 
provided by the Table. 

 
II Transient Solution:     Define the transient solution by equation: 

( ) ( ) ( )sU r,t u r,t u r= −      

then solution of the original problem is a sum of transient solution and 
steady state solution:     

( ) ( ) ( )su r ,t U r,t u r= +  

r

1r

0
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          Substitute it into the Heat Equation: 
                    

          ( )
22

s s
2 2

u uU 1 U 1 1 UF r
r r r r tr r α

∂ ∂∂ ∂ ∂
+ + + + =

∂ ∂ ∂∂ ∂
   

Since  ( )
2

s
2

u 1 u F x 0
r rr

∂ ∂
+ + =

∂∂
,  it yields 

2

2

U 1 U 1 U
r r tr α

∂ ∂ ∂
+ =

∂ ∂∂
 

We obtained the equation for the new unknown function ( )U r,t  which  
has homogeneous boundary condition:  

          1r r=  [ ] [ ] [ ]
1 1 1

s 1 1r r r r r r
U u u f f 0

= = =
= − = − =  

As a result, we reduced the non-homogeneous problem to a 
homogeneous equation for ( )U r,t  with homogeneous boundary 

conditions.   Initial condition for function ( )U r,t : 

          ( ) ( ) ( ) ( ) ( )s 0 sU r,0 u r,0 u r u r u r= − = −   
 
Solution for U(r,t)      We consider the following BASIC initial boundary value problem: 
 

2

2

U 1 U 1 U
r r tr α

∂ ∂ ∂
+ =

∂ ∂∂
   ( )U r,t ,  ( )1r 0,r∈ , 0t >  

 
                                              initial condition:   ( ) ( ) ( )0 sU r,0 u r u r= −  
   
          boundary conditions:  ( )U 0,t < ∞   0t >   

                [ ]
1r rU 0

=
=   0t >    

    
 

We already know a solution of this basic problem obtained by 
separation of variables: 

( )U x,t  n n n
n 1

a R T
∞

=

= ∑  ( ) 2
n t

n 0 n
n 1

a J r e αλλ
∞

−

=

= ∑  

          where coefficients na  are the Fourier coefficients determined by  
the corresponding initial condition for the function ( )t,xU : 

( ) ( ) ( )

( )

1

1

r

0 s n
0

n r
2
n

0

u r u r R r rdr
a

R r rdr

−  
=

∫

∫

( ) ( ) ( )

( )

1

1

r

0 s 0 n
0

r
2
0 n

0

u r u r J r rdr

J r rdr

λ

λ

−  
=

∫

∫
 

 
III  Solution of IBVP: Solution of the original IBVP is a sum of steady state solution and 

transient solution: 
    

 

( )u r,t  ( ) ( )su r U r,t= +  
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  VIII.3.3.2  HOLLOW CYLINDER  BASIC CASE: Homogeneous Equation and Boundary Conditions 
 
 
 
 

          
2

2

u 1 u 1 u
r r tr α

∂ ∂ ∂
+ =

∂ ∂∂
           ( )t,xu :    ( )1r 0,r∈ , 0t >    

 
                                              Initial condition:   ( ) ( )0u r,0 u r=    
   
          Boundary conditions:  [ ]

1r ru 0
=

=   0t >        (I, II or IIIrd kind) 

                [ ]
2r ru 0

=
=  0t >     (I, II or IIIrd kind) 

                  
 
 
 
 
 
1) Separation of variables:    ( ) ( ) ( )u r,t R x T t=  
 
          [ ] [ ] ( )

1 1r r r ru R T t 0
= =

= =  ⇒   [ ]
1r rR 0

=
=  

          [ ] [ ] ( )
2 2r r r ru R T t 0

= =
= =  ⇒   [ ]

2r rR 0
=

=  

       

          R 1 R 1 T
R r R T

µ
α

′′ ′ ′
+ = =   

 

2) Sturm-Liouville Problem:    R 1 R
R r R

µ
′′ ′

+ =      ( 2µ λ= −    SLP) 

 
          2 2 2 2r R rR r 0 R 0λ ′′ + + − =    Bessel Equation of 0 order 
    
          Eigenvalues:      2

n nµ λ= −  n 1,2,...=  
                  nλ  are roots of characteristic eqn 
 
          Eigenfunctions:     ( ) ( ) ( )n 1,n 0 n 2,n 0 nR r c J r c Y rλ λ= +  
              
 
3) Equation for T :      T T 0αµ′ − =  
 
          2

nT T 0αλ′ + =    ⇒   ( )
2
n t

nT t e αλ−=  
 
 

4) Solution:       ( ) n n n
n 1

u r,t a R T
∞

=

= ∑   ( )
2
n t

n n
n 1

a R r e αλ
∞

−

=

= ∑  

 
 
 

Initial condition:       ( ) ( )0 n n
n 1

u r,0 u r a R
∞

=

= = ∑    ⇒      
( ) ( )

( )

1

1

r

0 n
0

n r
2
n

0

u r R r rdr
a

R r rdr
=

∫

∫
 

r

0

2r
1r
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  GENERAL CASE:                  Non-Homogeneous Equation,  Non-Homogeneous Boundary Conditions 
 
 
 
 

          ( )
2

2

u 1 u 1 uF r
r r tr α

∂ ∂ ∂
+ + =

∂ ∂∂
           ( )t,xu :    ( )1r 0,r∈ , 0t >    

 
                                              Initial condition:   ( ) ( )0u r,0 u r=    
   
          Boundary conditions:  [ ]

1
1r ru f

=
=   0t >        (I, II or IIIrd kind) 

                [ ]
2

2r ru f
=

=  0t >     (I, II or IIIrd kind) 

                  
 
 
 
 
 
I   Steady State Solution     Time-independent solution  ( )su r  

Substitution of a time-independent function into the heat equation leads 
to the following ordinary differential equation: 

( )
2

s s
2

u u1 F r 0
r rr

∂ ∂
+ + =

∂∂
    ( )su r ,  ( )1r 0,r∈   

 
                                              subject to the boundary conditions of the same kind as for PDE:  
  
          [ ]

1
s 1r r

u f
=

= ,  0t >         (I, II or IIIrd kind) 

          [ ]
2

s 2r r
u f

=
= ,  0t >         (I, II or IIIrd kind) 

  
General solution of ODE:   

( ) ( )s 1 2
1u r rF r dr dr c ln r c
r

 = − + +    ∫ ∫  

 
Coefficients 1 2c ,c  have to be determined from boundary conditions. 
 

II  Transient Solution:     Define the transient solution by equation: 

( ) ( ) ( )sU r,t u r,t u r= − ,    ( ) ( ) ( )su r ,t U r,t u r= +  

Substitution into the Heat Equation yields an equation for transient 
solution:         

2

2

U 1 U 1 U
r r tr α

∂ ∂ ∂
+ =

∂ ∂∂
 

for the new unknown function ( )U r,t  which has two homogeneous 
boundary conditions:  

          1r r=  [ ] [ ] [ ]
1 1 1

s 1 1r r r r r r
U u u f f 0

= = =
= − = − =  

          2r r=  [ ] [ ] [ ]
2 2 2

s 2 2r r r r r r
U u u f f 0

= = =
= − = − =  

and initial condition: 
 

          ( ) ( ) ( ) ( ) ( )s 0 sU r,0 u r,0 u r u r u r= − = −   

r

0

2r
1r
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Solution for U(r,t)      We consider the following BASIC initial boundary value problem: 
 

2

2

U 1 U 1 U
r r tr α

∂ ∂ ∂
+ =

∂ ∂∂
   ( )U r,t ,  ( )1r 0,r∈ , 0t >  

 
                                              initial condition:   ( ) ( ) ( )0 sU r,0 u r u r= −  
   
          boundary conditions:  [ ]

1r rU 0
=

=   0t >    

  [ ]
2r rU 0

=
=   0t >   

 
We already know a solution of this basic problem obtained by 
separation of variables: 
 

( )U x,t  n n n
n 1

a R T
∞

=

= ∑  ( )
2
n t

n n
n 1

a R r e αλ
∞

−

=

= ∑  

 

          where coefficients na  are the Fourier coefficients determined by  
the corresponding initial condition for the function ( )t,xU : 
 

( ) ( ) ( )

( )

1

1

r

0 s n
0

n r
2
n

0

u r u r R r rdr
a

R r rdr

−  
=

∫

∫
 

 
 
III   Solution of IBVP: Solution of the original IBVP is a sum of steady state solution and 

transient solution: 
    

 

( )u r,t  ( ) ( )su r U r,t= +  
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   VIII.3.3.4         HEAT EQUATION in Cylindrical Coordinates:   
                          

          ( )u r, ,z,tθ     
2 2 2

2 2 2 2

u 1 u 1 u u g 1 u
r r k tr r z αθ

∂ ∂ ∂ ∂ ∂
+ + + + =

∂ ∂∂ ∂ ∂
 

 

1) Long cylinder      u 0
z

∂ = ∂ 
:    

2 2

2 2 2

u 1 u 1 u g 1 u
r r k tr r αθ

∂ ∂ ∂ ∂
+ + + =

∂ ∂∂ ∂
 

 
 
 
 
 
          ( )u r, ,tθ  
 
 
 
 
 
 
 
 

2) Short cylinder with angular symmetry  u 0
θ

∂ = ∂ 
:    

2 2

2 2

u 1 u u g 1 u
r r k tr z α

∂ ∂ ∂ ∂
+ + + =

∂ ∂∂ ∂
 

 
 
 
 
 
 
 
          ( )u r,z,t  
 
 
  
 
 
 
 
 
 

3) Cylindrical surface of fixed radius 1r    u 0
r

∂ = ∂ 
:    

2 2

2 2 2
1

1 u u g 1 u
k tr z αθ

∂ ∂ ∂
+ + =

∂∂ ∂
  

 
 
 
 
                Thin-wall cylindrical pipe 
 
 
          ( )u r,z,t  
 
 
 
 
 
 
 

r

( )r ,θ

0 θ

1r

r

0

1z

( )r,z

1r

r

0

1z

( ),zθ

θ
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                   THE HEAT EQUATION     Cylindrical Coordinates 

                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TRANSIENT PROBLEM - HE

( ) [ ) [ ] ( ) 3
1r , ,z 0,r , 0,Lθ π π∈ × − × ⊂ 

t 0>

STEADY STATE PROBLEM - PE

( ) ( ) ( )su r , ,z,t u r, ,z U r, ,z,tθ θ θ= +

TRANSIENT SOLUTION

( )2 1 uu F r, ,z
t

θ
α

∂
∇ + =

∂

[ ]Su f=

[ ]
0

0t tu u
=

=

2 1 UU
tα

∂
∇ =

∂

[ ]SU 0=

[ ] ( )
0

0 s 0t tU u u U r, ,zθ
=

= − =

( )2u F r, ,z 0θ∇ + =

[ ]s S
u f=

( ) ( ) ( )U r, ,z,t r , ,z T tθ Φ θ=

2Φ β
Φ

∇
=

1 T
T

β
α

′
=

( )2 2
nmk nm kβ λ ω= − +

nm n kR ,  ,  ZΘ

( )2 2
nm k tT e α λ ω− +

=

( ) ( ) ( )su r , ,z,t    u r , ,z   U r, ,z,tθ θ θ= +

HELMHOLTZ EQUATION

SEPARATION OF VARIABLES

SOLUTION OF IBVP

[ ] Su f=

[ ] Su f=

( ) ( ) ( )U r, ,z,t r , ,z T tθ Φ θ=

see   p.654 for the case of solid cylinder, and
       p.658 for the case of hollow cylinder

( ) ( ) [ ] ( ) 3
1 2r , ,z r ,r , 0,Lθ π π∈ × − × ⊂ 

solid cylinder

hollow cylinder

( )su r , ,zθ ( )U r, ,z,tθ

Θ ηΘ′′ =

( ) ( )2Θ θ π Θ θ+ =

SLP
⇒

2
n nη = − ( ) ( ) ( )n n na cos n b sin nΘ θ θ θ= +

0 0η = ( )0 1Θ θ =

SLP
⇒

Z Zγ′′ =

2
k kγ ω= −

2
k k kZ Zω′′ = −

( )kZ z

[ ]z 0Z 0
=

=

[ ]z KZ 0
=

=

2

2

1 nR R R R
r r

µ′′ ′+ − =

SLP
⇒

2
nm nmµ λ= −

2
2

nm nm nm nm2

1 nR R R R
r r

λ′′ ′+ − = −

2
n nnΘ Θ′′ = − n 0,1,2,...=

( )2 2 2 2
nm nm nm nmr R rR r n R 0λ′′ ′+ + − =

( ) ( )nm n nmR r J rλ=

( )R 0 < ∞

( )1R r 0=

n 0,1,2,...=

( )m 0 ,1,2,...=

supplemental eigenvalue problems

( ) ( ) ( ) ( )r, ,z R r Z zΦ θ Θ θ=
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      VIII.3.3.5        BASIC IBVP FOR HEAT EQUATION IN FINITE SOLID CYLINDER     3-D 
 

Consider the Basic IBVP for the 3-D Heat Equation: 
 

2 2 2

2 2 2 2

U 1 U 1 U U 1 U
r r tr r z αθ

∂ ∂ ∂ ∂ ∂
+ + + =

∂ ∂∂ ∂ ∂
 

 

          ( ) [ ) [ ] ( )1r , ,z 0,r 0,2 0,Lθ π∈ × ×  , 0t >   

          ( ) [ ) [ ] ( )1r , ,z 0,r , 0,Lθ π π∈ × − ×  

          Separation of variables: 

          ( ) ( ) ( )U r, ,z,t r , ,z T tθ Φ θ=  

          Separated equation: 

          

2 2 2

2 2 2 2
1 1

1 Tr rr r z
T

Φ Φ Φ Φ
θ β

Φ α

∂ ∂ ∂ ∂
+ + + ′∂∂ ∂ ∂ = =  

          Separated equation yields the Helmholtz Equation: 

Helmholtz Equation         
2Φ β

Φ
∇

=          2Φ βΦ∇ =  

          

The solution of the Helmholtz Equation subject to boundary conditions 
can be obtained by the eigenfunction expansion method. 

          Assume    
( ) ( ) ( ) ( )r, ,z R r Z zΦ θ Θ θ=  

           
Substitute into the Helmholtz Equation 

             

             2

R 1 R 1 Z
R r R Zr

Θ β
Θ

′′ ′ ′′ ′′
+ + + =   

 
    boundary conditions  Separation of variables in the boundary conditions yields: 

1r r=   [ ] ( ) ( ) ( )
1

1r r R r Z z 0Φ Θ θ
=

= =    ⇒   [ ]
1r rR 0

=
=  

          z 0=    [ ] ( ) ( ) ( )z 0 R r Z 0 0Φ Θ θ
=

= =    ⇒   [ ]z 0Z 0
=

=  

          z L=    [ ] ( ) ( ) ( )z K R r Z K 0Φ Θ θ
=

= =    ⇒   [ ]z LZ 0
=

=  
 
          From physical consideration, we need  
 
    bounded solution   r 0=   [ ] ( ) ( ) ( )r 0 R 0 Z zΦ Θ θ

=
= < ∞    ⇒   [ ]r 0R

=
< ∞  

           

2π -periodic solution  ( ) ( )r, 2 ,z r , 2 ,zΦ θ π Φ θ π+ = +    ⇒      ( ) ( )2Θ θ π Θ θ+ =  

θ

( ) ( )0U r, ,z,t 0   U r, ,zθ θ= =

initial condition:

[ ] I ,II , or III

SU 0=

all boundary conditions
are homogeneous

1r

r

0

z L=

z



Chapter VIII  PDE                                  VIII.3  Transient Initial-Boundary Value Problems                                November 4, 2023                   
 

655 

Separate variables      2 2 2R R Zr r r r
R R Z

Θ β η
Θ

′′ ′′ ′ ′′
= − − − =  

 

1st equation         0Θ ηΘ′′ − =     

 

that is the SLP without boundary conditions, with condition of 
periodicity ( ) ( )2Θ θ π Θ θ+ =  (see also the section VIII.3.6). 
 
It can be considered in the interval π θ π− ≤ < with the condition  

          ( ) ( )Θ π Θ π− =   

          The case 0η =  yields the linear solution 
          0 1 2c cθΘ = +   
          The only periodic linear function is a constant function, therefore, 
          0 1Θ =   

can be taken as an eigenfunction corresponding to 0 0η = . 
 
For positive eigenvalues, the separation constant has to be 2η µ= − , 
then the general solution is 

0 1 2c cos c sinµθ µθΘ = +   

A function with a period 2T
n
π

=  is also a 2π -periodic.  Therefore,  

for 2π –periodic solution, the frequency µ  can be any positive integer  
2 2 n n
T 2
π πµ

π
= = = . 

So, for 2
n nη = − , the corresponding eigenfunctions are 

n 1 2c cos n c sin nθ θΘ = +  

That is consistent with the standard Fourier series over symmetric 2π -
interval ( ), π π−  , which is based on the complete set of mutually 
orthogonal functions: 

          ( ) ( ){ }1, cos n , sin nθ θ  

          Therefore, solution of the first equation can be summarized as: 

 
          0 0η =     ( )0 1Θ θ =  

          2
n nη = −    ( ) ( ) ( )n n na cos n b sin nΘ θ θ θ= +  n 1,2,...=  

 
 
 

2nd equation        2 2 2 2R R Zr r r r n
R R Z

β
′′ ′ ′′

− − − = −   n 0,1,2,...=  

 

          
2

2

R 1 R n Z
R r R Zr

β µ
′′ ′ ′′

+ − = − =    separate variables 

          
2

2

R 1 R n
R r R r

µ
′′ ′

+ − =      consider equation for R 
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          2 2 2r R rR n R r R 0µ′′ ′+ − − =  
 

That is the Sturm-Liouville problem for Bessel Equation of order n 

( )2 2 2r R rR r n R 0µ ′′ ′+ + − − =    ( ) ( )
2nrR r R 0

r
µ

 −′′ + + − = 
 

 

          2µ λ= −  
 
          2 2 2 2r R rR r n R 0λ ′′ ′+ + − =     (see sectionVII.12, p.507) 

          [ ]r 0R
=

< ∞  

          [ ]
1r rR 0

=
=  

 
          ( ) ( ) ( )n 1,n n 2,n nR r c J r c Y rλ λ= +   general solution  
 
          [ ]r 0R

=
< ∞  ⇒   2,nc 0=  

 
          ( ) ( )n 1,n nR r c J rλ=  
 
          [ ]

1r rR 0
=

=  ⇒   ( )n 1J r 0λ =    ⇒   mnλ  n 0,1,2,...=  

                      ( )m 0 ,1,2,...=  
 
          ( ) ( )n 1,n nR r c J rλ=  
 
          ( )n 1J r 0λ =    ⇒   mnλ  n 0,1,2,...=  

                 ( )m 0 ,1,2,...=  
 
          n comes from the order of the Bessel functions ( )nJ rλ . 
          Eigenvalues mnλ  should be found for each n 0,1,2,...=  
  

3rd equation        2
mn

Z
Z

β λ
′′

− = −  

 

          2
mn

Z
Z

λ β γ
′′

= + =  combine constants to a single parameter γ   

 
          Z Z 0γ′′ − =      

          [ ]z 0Z 0
=

=   
SLP

⇒   2
kγ ω= −   ( )k 0 ,1,2,...=  

          [ ]z KZ 0
=

=     ( )kZ z    eigenfunctions 
 

          Then the second part of the last equation becomes 

          2 2
mn kλ β ω+ = −  

          and the constant of separation is 
 
          ( )2 2

mnk mn k β λ ω= − +  
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Solution for ( )T t      ( )nmkT t  ( )2 2
mn k t

 e
α λ ω− +

=    
   
 
 
The solution of the Basic IBVP for the Heat Equation is: 

    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
0 m k nm kt t

0mk 0 0m k nmk nmk n nm k
m k n 1 m k

U r, ,z,t A J r Z z e  A cos n B sin n J r Z z eα λ ω α λ ωθ λ θ θ λ− + − +

=

= + +  ∑∑ ∑∑∑
 

The coefficients in this solution should be found to satisfy the initial condition: 
 

( ) ( )0U r, ,z,0 U r, ,zθ θ=  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0mk 0 0m k nmk k n nm nmk k n nm
m k n 1 m k n 1 m k

U r, ,z A J r Z z A Z z J r cos n B Z z J r sin nθ λ λ θ λ θ
= =

   = + +      
∑∑ ∑ ∑∑ ∑ ∑∑

 
The following cascade of expansions over the eigenfunctions yields equations for calculation of coefficients.  
First, they are calculated as the coefficients of the standard Fourier series over interval ( ),π π− : 

( ) ( )0mk k 0 0m
m k

A Z z  J rλ 
  

∑ ∑  ( )0
1 U r, ,z  d

2

π

π

θ θ
π

+

−

= ∫   

( ) ( )nmk k n nm
m k

A Z z  J rλ 
  

∑ ∑  ( ) ( )0
1 U r, ,z  cos n d

π

π

θ θ θ
π

+

−

= ∫  

( ) ( )nmk k n nm
m k

B Z z  J rλ 
  

∑ ∑  ( ) ( )0
1 U r, ,z  sin n d

π

π

θ θ θ
π

+

−

= ∫  

 
Second, as the coefficients of expansion into Fourier-Bessel series: 

( )0mk k
k

A Z z∑     
( )

( ) ( )
1r

0 0 0m2
00 0m

1 U r, ,z  J r  rdr d
2 J

π

π

θ λ θ
π λ

+

−

= ∫ ∫  

  ( )nmk k
k

A Z z∑     
( )

( ) ( ) ( )
1r

0 n nm2
0n nm

1 U r, ,z  J r  cos n rdr d
J

π

π

θ λ θ θ
π λ

+

−

= ∫ ∫  

( )nmk k
k

B Z z∑     
( )

( ) ( ) ( )
1r

0 n nm2
0n n

1 U r, ,z  J r  sin n rdr d
J

π

π

θ λ θ θ
π λ

+

−

= ∫ ∫  

 
and, finally, by expansion into Generalized Fourier series, the coefficients for solution of the Basic IBVP are defined   
 

0mkA        
( ) ( )

( ) ( ) ( )
1rL

0 0 0m k2 2
0 00 0m k

1 U r, ,z  J r  Z z rdr d  dz
2 J r Z z

π

π

θ λ θ
π λ

+

−

= ∫ ∫ ∫  

nmkA        
( ) ( )

( ) ( ) ( ) ( )
1rL

0 n nm k2 2
0 0n nm k

1 U r, ,z  J r  Z z  cos n rdr d  dz
J r Z z

π

π

θ λ θ θ
π λ

+

−

= ∫ ∫ ∫  

nmkB        
( ) ( )

( ) ( ) ( ) ( )
1rL

0 n nm k2 2
0 0n nm k

1 U r, ,z  J r  Z z  sin n rdr d  dz
J r Z z

π

π

θ λ θ θ
π λ

+

−

= ∫ ∫ ∫  
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    VIII.3.3.6                 BASIC IBVP FOR HEAT EQUATION IN FINITE HOLLOW CYLINDER         3-D  
 

Consider the Helmholtz equation which appears in the separation of 
variables in the Basic IBVP for the 3-D Heat Equation: 

 
2 2 2

2 2 2 2

U 1 U 1 U U 1 U
r r tr r z αθ

∂ ∂ ∂ ∂ ∂
+ + + =

∂ ∂∂ ∂ ∂
 

 

          ( ) ( ) [ ] ( )1 2r , ,z r ,r 0,2 0,Lθ π∈ × ×  , 0t >   

          ( ) ( ) [ ] ( )1 2r , ,z r ,r , 0,Lθ π π∈ × − ×  

          Separation of variables: 

          ( ) ( ) ( )U r, ,z,t r , ,z T tθ Φ θ=  

          Separated equation: 

          

2 2 2

2 2 2 2
1 1

1 Tr rr r z
T

Φ Φ Φ Φ
θ β

Φ α

∂ ∂ ∂ ∂
+ + + ′∂∂ ∂ ∂ = =  

          Separated equation yields the Helmholtz Equation: 

Helmholtz Equation         
2Φ β

Φ
∇

=          2Φ βΦ∇ =  

          

The solution of the Helmholtz Equation subject to boundary conditions 
can be obtained by the eigenfunction expansion method. 

          Assume    
( ) ( ) ( ) ( )r, ,z R r Z zΦ θ Θ θ=  

           
Substitute into the Helmholtz Equation 

             

             2

R 1 R 1 Z
R r R Zr

Θ β
Θ

′′ ′ ′′ ′′
+ + + =   

 
    boundary conditions  Separation of variables in the boundary conditions yields: 

1r r=   [ ] ( ) ( ) ( )
1

1r r R r Z z 0Φ Θ θ
=

= =    ⇒   [ ]
1r rR 0

=
=  

2r r=   [ ] ( ) ( ) ( )
2

2r r R r Z z 0Φ Θ θ
=

= =    ⇒   [ ]
2r rR 0

=
=  

          z 0=    [ ] ( ) ( ) ( )z 0 R r Z 0 0Φ Θ θ
=

= =    ⇒   [ ]z 0Z 0
=

=  

          z L=    [ ] ( ) ( ) ( )z K R r Z K 0Φ Θ θ
=

= =    ⇒   [ ]z KZ 0
=

=  

 
          From physical consideration, we need        
           

2π -periodic solution  ( ) ( )r, 2 ,z r , 2 ,zΦ θ π Φ θ π+ = +    ⇒      ( ) ( )2Θ θ π Θ θ+ =  

[ ] I ,II , or III

SU 0=

all boundary conditions
are homogeneous

( ) ( )0U r, ,z,t 0   U r, ,zθ θ= =

initial condition:

r

z K=

z

2r

0
1r

θ
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Separate variables      2 2 2R R Zr r r r
R R Z

Θ β η
Θ

′′ ′′ ′ ′′
= − − − =  

 

1st equation         0Θ ηΘ′′ − =     

 

that is the SLP without boundary conditions, with condition of 
periodicity ( ) ( )2Θ θ π Θ θ+ =  (see also the section VIII.3.6). 
 
It can be considered in the interval π θ π− ≤ < with the condition  

          ( ) ( )Θ π Θ π− =   

          The case 0η =  yields the linear solution 
          0 1 2c cθΘ = +   
          The only periodic linear function is a constant function, therefore, 
          0 1Θ =   

can be taken as an eigenfunction corresponding to 0 0η = . 
 
For positive eigenvalues, the separation constant has to be 2η µ= − , 
then the general solution is 

0 1 2c cos c sinµθ µθΘ = +   

A function with a period 2T
n
π

=  is also a 2π -periodic.  Therefore,  

for 2π –periodic solution, the frequency µ  can be any positive integer  
2 2 n n
T 2
π πµ

π
= = = . 

So, for 2
n nη = − , the corresponding eigenfunctions are 

n 1 2c cos n c sin nθ θΘ = +  

That is consistent with the standard Fourier series over symmetric 2π -
interval ( ), π π−  , which is based on the complete set of mutually 
orthogonal functions: 

          ( ) ( ){ }1, cos n , sin nθ θ  

          Therefore, solution of the first equation can be summarized as: 

 
          0 0η =     ( )0 1Θ θ =  

          2
n nη = −    ( ) ( ) ( )n n na cos n b sin nΘ θ θ θ= +  n 1,2,...=  

 
 
 

2nd equation        2 2 2 2R R Zr r r r n
R R Z

β
′′ ′ ′′

− − − = −   n 0,1,2,...=  

 

          
2

2

R 1 R n Z
R r R Zr

β µ
′′ ′ ′′

+ − = − =    separate variables 

          
2

2

R 1 R n
R r R r

µ
′′ ′

+ − =      consider equation for R 
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          2 2 2r R rR n R r R 0µ′′ ′+ − − =  
 

That is the Sturm-Liouville problem for Bessel Equation of order n 

( )2 2 2r R rR r n R 0µ ′′ ′+ + − − =    ( ) ( )
2nrR r R 0

r
µ

 −′′ + + − = 
 

 

          2µ λ= −  
 
          2 2 2 2r R rR r n R 0λ ′′ ′+ + − =     (see sectionVII.12, p.515) 

          [ ]
1r rR 0

=
=  

          [ ]
2r rR 0

=
=  

 
          ( ) ( ) ( )n 1,n n 1,n nR r c J r c Y rλ λ= +   general solution  
 
          

See solution of the Sturm-Liouville problem for the Bessel equation in 
the annular domain (Section VII.12, p.515): 
For each n 0,1,2,...= , there infinitely many eigenvalues nmλ   and 
corresponding eigenfunctions (orthogonal w.r.t weight ( )p r r= ):  
   

( )nmR r ( ) ( )1,n n nm 1,n n nmc J r c Y rλ λ= +  
 
          [ ]characteristic eqn 0=   ⇒    mnλ   n 0,1,2,...=  

                     ( )m 0 ,1,2,...=  
 
          n comes from the order of the Bessel functions ( )nJ rλ  and ( )nY rλ . 
          Eigenvalues mnλ  should be found for each n 0,1,2,...=  

          The square of the norm of eigenfunctions is denoted as ( ) 2
nmR r  

 
  

3rd equation        2
mn

Z
Z

β λ
′′

− = −  

 

          2
mn

Z
Z

λ β γ
′′

= + =  combine constants to a single parameter γ   

 
          Z Z 0γ′′ − =      

          [ ]z 0Z 0
=

=   
SLP

⇒   2
kγ ω= −   ( )k 0 ,1,2,...=  

          [ ]z KZ 0
=

=     ( )kZ z    eigenfunctions 
 

          Then the second part of the last equation becomes 

          2 2
mn kλ β ω+ = −  

          and the constant of separation is 
 
          ( )2 2

mnk mn k β λ ω= − +  
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Solution for ( )T t      ( )nmkT t  ( )2 2
mn k t

 e
α λ ω− +

=    
   
 
 
The solution of the Basic IBVP for the Heat Equation is:                                                      ( ) ( )0m 0 0mrR r J λ=  

    

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2 2
0 m k nm kt t

0mk 0m k nmk nmk nm nm k
m k n 1 m k

U r, ,z,t A R r Z z e  A cos n B sin n R r Z z eα λ ω α λ ωθ θ θ λ− + − +

=

= + +  ∑∑ ∑∑∑
 

The coefficients in this solution should be found to satisfy the initial condition: 
 

( ) ( )0U r, ,z,0 U r, ,zθ θ=  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )0 0mk 0m 0m k nmk k nm nm nmk k nm nm
m k n 1 m k n 1 m k

U r, ,z A R r Z z A Z z R r cos n B Z z R r sin nθ λ λ θ λ θ
= =

   = + +      
∑∑ ∑ ∑∑ ∑ ∑∑

 
The following cascade of expansions over the eigenfunctions yields equations for calculation of coefficients.  
First, they are calculated as the coefficients of the standard Fourier series over interval ( ),π π− : 

( ) ( )0mk k 0m 0m
m k

A Z z  R rλ 
  

∑ ∑  ( )0
1 U r, ,z  d

2

π

π

θ θ
π

+

−

= ∫   

( ) ( )nmk k nm nm
m k

A Z z  R rλ 
  

∑ ∑  ( ) ( )0
1 U r, ,z  cos n d

π

π

θ θ θ
π

+

−

= ∫  

( ) ( )nmk k nm nm
m k

B Z z  R rλ 
  

∑ ∑  ( ) ( )0
1 U r, ,z  sin n d

π

π

θ θ θ
π

+

−

= ∫  

 
Second, as the coefficients of expansion into Fourier-Bessel series: 

( )0mk k
k

A Z z∑     
( )

( ) ( )
1r

0 0m 0m2
00m 0m

1 U r, ,z  R r  rdr d
2 R

π

π

θ λ θ
π λ

+

−

= ∫ ∫  

  ( )nmk k
k

A Z z∑     
( )

( ) ( ) ( )
1r

0 nm nm2
0nm nm

1 U r, ,z  R r  cos n r dr d
R

π

π

θ λ θ θ
π λ

+

−

= ∫ ∫  

( )nmk k
k

B Z z∑     
( )

( ) ( ) ( )
1r

0 nm nm2
0nm nm

1 U r, ,z  R r  sin n r dr d
R

π

π

θ λ θ θ
π λ

+

−

= ∫ ∫  

 
and, finally, by expansion into Generalized Fourier series, the coefficients for solution of the Basic IBVP are defined   
 

0mkA        
( ) ( )

( ) ( ) ( )
1rL

0 0m 0m k2 2
0 00m 0m k

1 U r, ,z  R r  Z z r dr d  dz
2 R r Z z

π

π

θ λ θ
π λ

+

−

= ∫ ∫ ∫  

nmkA        
( ) ( )

( ) ( ) ( ) ( )
1rL

0 nm nm k2 2
0 0nm nm k

1 U r, ,z  R r  Z z  cos n r dr d  dz
R r Z z

π

π

θ λ θ θ
π λ

+

−

= ∫ ∫ ∫  

nmkB        
( ) ( )

( ) ( ) ( ) ( )
1rL

0 nm nm k2 2
0 0nm nm k

1 U r, ,z  R r  Z z  sin n r dr d  dz
R r Z z

π

π

θ λ θ θ
π λ

+

−

= ∫ ∫ ∫  
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   VIII.3.4  SOLID SPHERE     Consider heat conduction in the sphere with angular symmetry: 
u u 0
φ θ

∂ ∂
= =

∂ ∂
 

he non-stationary temperature field ( )t,ru  depends only on the radial 
variable r and time variable t.   

Initial-boundary value problem: 
    

( )2
2

q r1 u 1 ur
r r k tr α

∂ ∂ ∂  + = ∂ ∂ ∂ 



  [ )1r 0,r∈     0t >  

    
initial condition: 

   ( ) ( )ru0,ru 0=      [ ]1r 0,r∈  

   boundary conditions: 
 

   ( )
1

1

r r
r r

uk h u u
r ∞ =

=

∂
= −

∂
   0t >  

   r 0u
=

< ∞       0t >  
 

where ∞u  is the ambient temperature and h  is a convective coefficient.  
Rewrite the boundary condition in the standard form 
   

1r r

huu h u
r k k

∞

=

∂ + = ∂ 
 

 
          1) Superposition of Steady State and Transient Solutions: 
 
            ( ) ( ) ( )su r ,t u r U r,t= +  
 

2) Steady State Solution: 
 

  
( )2 s

2

q ru1 r 0
r r kr

∂∂   + = ∂ ∂ 



 

 
  boundary conditions: 
 

   
1

s
s

r r

u huh u
r k k

∞

=

∂ + = ∂ 
   0t >  

   s r 0u
=

< ∞       0t >  
 
 General solution: 

  ( )su r  ( ) 2 1
22

q r c1 r dr dr c
k rr

 
= − − + 

 
∫ ∫



 

 For the solid sphere (bounded solution at r 0= ): 

  ( )su r  ( ) 2
22

q r1 r dr dr c
kr

 
= − + 

 
∫ ∫



 

 For uniform heat generation ( q const= ): 
 

  ( )su r  ( )2 2 1
1

qrq r r u
6k 3h ∞= − + +



 

r

0

1r

u ,h∞
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3)  Transient Solution: 
 

   2
2

1 U 1 Ur
r r tr α

∂ ∂ ∂  = ∂ ∂ ∂ 
   [ )1r 0,r∈     0t >  

initial condition: 

   ( ) ( ) ( )0 sU r,0 u r u r= −    [ ]1r 0,r∈  

   boundary conditions: 
 

   
1r r

U h U 0
r k =

∂ + = ∂ 
    0t >  

   r 0U
=

< ∞       0t >  

Reduction to Cartesian coordinates    Introduce the new dependent variable (reduction to Cartesian case): 

   ( ) ( )V r,t   r  U r,t=  

 Write   U     1V
r

=  

 Evaluate l.h.s. U
r

∂
∂

   2

1 1V V
r rr

∂
= − +

∂
 

     2r U
r

∂
∂

   V r V
r

∂
= − +

∂
 

     2r U
r r

∂ ∂ 
 ∂ ∂ 

 
2

2V V r V
r r r

∂ ∂ ∂
= − + +

∂ ∂ ∂
 

     2
2

1 r U
r rr

∂ ∂ 
 ∂ ∂ 

 
2

2

1 V
r r

∂
=

∂
 

 Evaluate r.h.s. 1 U
tα

∂
∂

   1 1 V
r tα

∂
=

∂
 

 Into equation: 
2

2

1 V
r r

∂
∂

   1 1 V
r tα

∂
=

∂
 

     
2

2

V
r

∂
∂

   1 V
tα

∂
=

∂
 

which formally is the 1-d Heat Equation for r  in the finite interval 
[ )1r 0,r∈ , which requires two boundary conditions.   

The first condition at 0r =   is obtained directly from the equation 
used for a change of variable: 

    r 0 r 0V rU 0
= =

= =      Dirichlet 

Consider the second boundary condition at 1rr = : 
 

  
1r r

U h U 0
r k =

∂ + = ∂ 
 

  
1r r

V h V 0
r r k r =

∂ + = ∂ 
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1

2
r r

1 V V h V 0
r r k rr =

∂ − + = ∂ 
 

   
1r r

1 V 1 h 1 V 0
r r r k r =

 ∂  + − =  ∂   
 

   
1

1 r r

V h 1 V 0
r k r

=

  ∂
+ − =  ∂   

       

   
1r r

V HV 0
r =

∂ + = ∂ 
   

1

h 1H
k r

= −   Robin 

 Initial-boundary value problem:  

 

   
2

2

V
r

∂
∂

1 V
tα

∂
=

∂
 

 
    
   ( ) ( ) ( ) ( )0 sV r,0 rU r,0 r u r u r= = −    
 
   

r 0 r 0V rU 0
= =

= =         D 
 

   
1r r

V HV 0
r =

∂ + = ∂ 
   

1

h 1H
k r

= −    R 

 
 

4) Sturm-Liouville Problem corresponding to the case of Dirichlet-
Robin boundary conditions (table SLP): 

  
Eigenvalues nλ  are the positive roots of the equation:  
 

0rsinHrcos 11 =+ λλλ  
 

 Eigenfunctions   rsinX nn λ=    
 

( )2 n 11
n

n

sin 2 rrX
2 4

λ
λ

= −  

  
 Solution (see Example 2, p.?):  
 

             ( )V r,t  ( ) 2
n t

n n
n 1

c sin r e αλλ
∞

−

=

= ∑  

 

             
( ) ( ) ( )

1r

0 s n
0

n 2
n

r u r u r sin r dr
c

X

λ − 
=

∫
 

 
 

5) Solution:           
 

    ( ) ( ) ( )s
1u r,t  u r   V r,t
r

= +  
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6)    Example  (turkey-3.mws)  Roasting of a turkey   
 

The turkey (W 15 lb= ) is assumed to be a sphere with the uniform initial temperature 
o

0u 10 C= .  It is exposed to the convective environment at ou 150 C∞ =  with the convective 

coefficient 2

Wh 10 
m K

= .  The turkey is considered to be done when its minimum temperature 

reaches o
doneu 75 C=  (Standard for California).  Thermophysical properties of turkey meat used 

for calculation are from the Table  (Section VIII.1.15,  p.580). 
 
> restart;with(plots): 

 
> alpha:=0.13e-6;rho:=1050;cp:=3540;k:=0.5; 

 := α 0.13 10-6  

 := ρ 1050  

 := cp 3540  

 := k 0.5  

> h:=10; 
 := h 10  

> qdot:=0.0; 
 := qdot 0.  

> W:=15.0;VOL:=W/rho;r1:=fsolve(4/3*Pi*r^3=VOL,r=0..1); 
 := W 15.0  

 := VOL 0.01428571429  

 := r1 0.1505235493  

> H[2]:=h/k-1/r1; 
 := H2 13.35652126  

Specified Temperatures: 
> uinf:=150;ud:=75; 

 := uinf 150  

 := ud 75  

> u0:=10; 
 := u0 10  

Steady State Solution: 
> us:=qdot*(r1^2-r)/6/k+qdot*r1/3/h+uinf; 

 := us 150.  

Transient Solution: 
characteristic equation: 
> w(x):=x*cos(x*r1)+H[2]*sin(x*r1); 

 := ( )w x  + x ( )cos 0.1505235493 x 13.35652126 ( )sin 0.1505235493 x  

> plot(w(x),x=0..50); 

 
Eigenvalues: 
> n:=1: for m from 1 to 20 do y:=fsolve(w(x)=0,x=10*m..10*(m+1)): if type(y,float) 
then lambda[n]:=y: n:=n+1 fi od: 
> for i to 4 do lambda[i] od; 

15.22059059  

33.80636804  

53.79455908  

74.23157321  

> N:=n-1; 
 := N 10  
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Eigenfunctions: 
> X[n]:=sin(lambda[n]*r); 

 := Xn ( )sin λn r  

> NX2[n]:=r1/2-sin(2*lambda[n]*r1)/4/lambda[n]; 

 := NX2n  − 0.07526177465 1
4

( )sin 0.3010470986 λn

λn

 

> c[n]:=int(r*(u0-us)*X[n],r=0..r1)/NX2[n]; 
 

> u(r,t):=us+(1/r)*sum(c[n]*X[n]*exp(-alpha*lambda[n]^2*t),n=1..N); 

( )u ,r t 150. 14.93682091 ( )sin 15.22059059 r e
( )−0.00003011662913 t

−( +  := 

4.270369272 ( )sin 33.80636804 r e
( )−0.0001485731676 t

 + 

1.825389731 ( )sin 53.79455908 r e
( )−0.0003762010963 t

 − 

0.9848499073 ( )sin 74.23157321 r e
( )−0.0007163424399 t

 + 

0.6104851654 ( )sin 94.84937974 r e
( )−0.001169532629 t

 − 

0.4138908063 ( )sin 115.5555678 r e
( )−0.001735901602 t

 + 

0.2985392385 ( )sin 136.3110699 r e
( )−0.002415492011 t

 − 

0.2252900588 ( )sin 157.0967601 r e
( )−0.003208320964 t

 + 

0.1759525722 ( )sin 177.9022284 r e
( )−0.004114396373 t

 − 

0.1411724164 ( )sin 198.7213411 r e
( )−0.005133722283 t

 + r)/
 

Solution: 
Symmetric Extension: 
> u2(r,t):=subs(r=-r,u(r,t)): 
> t1:=0.5*60*10:t2:=3*60*60:t2:=5*60*60:t3:=7*60*60:t4:=9*60*60: 
> z1:=subs(t=t1,u2(r,t)):z2:=subs(t=t2,u2(r,t)):z3:=subs(t=t3,u2(r,t)):z4:=subs(t=t4,u2(r,t)): 
> plot({u0,us,ud,z1,z2,z3,z4},r=-r1..r1,color=black,axes=boxed); 
 

 
Temperature at the center: 
> uc:=limit(u2(r,t),r=0); 

uc 150. 227.3472358 e
( )−0.00003011662913 t

35.39233832 e
( )−0.003208320964 t

 −  +  := 

144.3656753 e
( )−0.0001485731676 t

31.30235469 e
( )−0.004114396373 t

 +  − 

98.19603573 e
( )−0.0003762010963 t

28.05397191 e
( )−0.005133722283 t

 −  + 

73.10695799 e
( )−0.0007163424399 t

57.90413928 e
( )−0.001169532629 t

 +  − 

47.82738713 e
( )−0.001735901602 t

40.69420301 e
( )−0.002415492011 t

 +  − 

 

 
 
 
 
 
 
 

t 5 min=

t 9 hours=
( )u r,t
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> animate({u2(r,t),uc,ud,u0,us},r=-r1..r1,t=0..11*3600,frames=200,axes=boxed); 
 

 
> plot({uc,u0,ud},t=0..12*3600,axes=boxed,color=black); 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( )u 0,t

doneu

doneu

donet
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VIII.3.4.2   Heat Equation in Spherical Coordinates: ( )u r, , ,tφ θ          
 
               

2 2

2 2 2 2 2

u u 1 u 1 u g 1 u2r sin
r k tr r sin r sin

φ
φ φ αθ θ θ

 ∂ ∂ ∂ ∂ ∂ ∂
+ + + + = ∂ ∂ ∂ ∂∂ ∂ 

   

 
 

1) Sphere with angular symmetry   u 0
φ

 ∂
= ∂ 

:  
2 2

2 2 2 2

u u 1 u g 1 u2r
r k tr r sin αθ θ

∂ ∂ ∂ ∂
+ + + =

∂ ∂∂ ∂
 

 
 Example: Floating ball 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2) Spherical surface of fixed radius 1r  u 0
r

∂ = ∂ 
:  

2

2 2 2 2
1 1

1 u 1 u g 1 usin
k tr sin r sin

φ
φ φ αθ θ θ

 ∂ ∂ ∂ ∂
+ + = ∂ ∂ ∂∂ 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example: Diffusion of foreign mint coins in France 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

( ),φ θ

1r

r

0
φ

θ

( )r,θ

r

0
φ

θ
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   VIII.3.4.3           PDE in spherical coordinates 
 

Consider a BVP generated by separation of variables in a PDE in 
spherical coordinates.  We will only see what the Sturm-Liouville 
problems are in this case.   
 

1.  Laplace’s Equation Recall the general form of Laplace’s Equation in spherical coordinates 
for the function ( )θφ ,,ru ,  Dr ∈ :  

   
 

          0u
r
1u

sin
cos

r
1u

sinr
1

r
u

r
2

r
u

2

2

222

2

222

2

=
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

+
∂
∂

θθθ
θ

φθ
             (1) 

 
                   or with differential operators written in self-adjoint form: 
 

                                              0uu
sin
cosu

sin
1

r
ur

r 2

2

2

2

2
2 =

∂
∂

+
∂
∂

+
∂
∂

+





∂
∂

∂
∂

θθθ
θ

φθ
             (2) 

 
 
 
separation of variables     Assume  

( ) ( ) ( ) ( )u r, , R rϕ θ Φ ϕ Θ θ=                         (3) 
  
Substitute into equation (1) 

          0R
r
1R

sin
cos

r
1R

sinr
1R

r
2R 2222 =′′+′+′′+′+′′ ΘΦΘΦ

θ
θΘΦ

θ
ΦΘΦΘ  

 

          Multiply the equation by 
ΦΘR
r 2

 

  

          0
sin
cos

sin
1

R
Rr2

R
Rr 2

2 =
′′

+
′

+
′′

+
′

+
′′

Θ
Θ

Θ
Θ

θ
θ

Φ
Φ

θ
 

          Consider the axisymmetric case ( 0=
∂
∂
φ

): 

          0
sin
cos

R
Rr2

R
Rr 2 =

′′
+

′
+

′
+

′′
Θ
Θ

Θ
Θ

θ
θ  

 
          Separate variables and set both sides of the equation equal to the same  

constant 

          µ
Θ
Θ

Θ
Θ

θ
θ

=
′′

−
′

−=
′

+
′′

sin
cos

R
Rr2

R
Rr 2  

 
          It yields two equations: 
 

1) µ=
′

+
′′

R
Rr2

R
Rr 2   

 
which can be rewritten in the form   

0RRr2Rr 2 =−′+′′ µ         (Euler-Cauchy equation) 
or in the self-adjoint Sturm-Liouville form     
 

( ) ( )21 r R R
1

µ′′− = −                    (4) 

 
Solutions of this equation are sought in the form mR r=  

( ),φ θ

1r

r

0
φ

θ
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2) cos 0
sin

θΘ Θ µΘ
θ

′′ ′+ + =  

 
Use change of independent variable  x cosθ=   , then 

Θ ′  d d dx dsin
d dx d dx
Θ Θ Θθ
θ θ

= = = −  

Θ ′′  d d d d d d dsin cos sin
d d d dx dx d dx

Θ Θ Θ Θθ θ θ
θ θ θ θ

     = = − = − −     
     

 

           
2

2
2

d d d dx d dcos sin cos sin
dx dx dx d dx dx
Θ Θ Θ Θθ θ θ θ

θ
 = − − = − + 
 

 

          Substitute into equation 

          
2

2
2

d dcos sin
dx dx
Θ Θθ θ− +

cos dsin 0
sin dx

θ Θθ µΘ
θ

− + =  

          
2

2
2

dsin
dx

Θθ d2cos 0
dx
Θθ µΘ− + =  

          ( )
2

2
2

d1 x
dx

Θ
−

d2x 0
dx
Θ µΘ− + =  

          or in self-adjoint Sturm-Liouville form: 

          ( )2d d1 x
dx dx

Θ − −  
µΘ=                   (5) 

          This equation is called Legendre’s differential equation.  It happens that 
          its solution is bounded only if the separation constant is a non-negative  
          integer of the form 
            ( )n n 1µ = +   n 0,1,2,...=  

          Its solution consists of Legendre polynomials ( )nP x  (see Sec. 5.7). 

2.  Heat Equation Consider the axisymmetric heat equation for ( )u r,t ,  Dr ∈ , t 0>  in 
spherical coordinates:   

          
2

2
2

u 2 u ua
r r tr

∂ ∂ ∂
+ =

∂ ∂∂
                              (6) 

Separation of variables     ( ) ( ) ( )u r,t R r T t=                   
Substitute into equation (6) 

          22R T R T a RT
r

′′ ′ ′+ =         

          divide by RT  and separate variables   

          2R 2 R Ta
R r R T

µ
′′ ′ ′

+ = =    

          It yields two ordinary differential equations.  Equation for R  is   
          2 2r R 2rR r R 0µ′′ ′+ − =                   (7) 
          which is a spherical Bessel equation of zero order (see equation (25) in  
          Sec. 5.6 with n 0= , AAEM-II).   
          Eigenvalue problem: 

          ( )2
2

1LR r R R
r

µ′′≡ =  

          Its solutions are given by spherical Bessel functions  

          ( ) ( )1 2
0

J r
j r

2 r
π

=  

          ( ) ( )1 2
0

Y r
y r

2 r
π

=  
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Why we cannot be completely satisfied with the method of separation of variables? 
 
 
How about the time dependent boundary conditions, for example? 
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   VIII.3.5   THE WAVE EQUATION 
 
   VIII.3.5.1      1-D Cartesian     BASIC      homogeneous equation with homogeneous boundary conditions 

   

           2

2

22

2

t
u

a
1

x
u

∂
∂

=
∂
∂                ( )t,xu ,  ( )L,0x ∈ , 0t >  

 

                                               Initial conditions:   ( ) ( )xu0,xu 0=   

                 ( ) ( )xu
t

0,xu
1=

∂
∂       

           Boundary conditions:  ( ) 0t,0u = ,             0t >        (I) 

                 ( ) ( ) ,0t,xuh
x

t,Luk 22 =+
∂

∂  0t >      (III)   

                 Denote  2
2

2

hH 0
k

= >  

 
                                                                                
1.  Separation of variables we assume that the function ( )t,xu  can be represented as a product of 

two functions each of a single variable 

( ) ( ) ( )u x, y X x T t=     substitute into equation 
       
          ( ) ( ) ( ) ( )2a X x T t X x T t′′ ′′=   after separation of variables, one gets 
 

          µ=
′′

=
′′

T
T

a
1

X
X

2      with a separation constant µ   

 

  boundary conditions:    0x =  ( ) ( )X 0 T t 0=      ⇒   ( ) 00X =  

        Lx =  ( ) ( ) ( ) ( )2X L T t H X L T t 0′ + =  ⇒   ( ) ( ) 0LXHLX 2 =+′   
 

 
2.  Sturm-Liouville problem     0XX =−′′ µ         

 
This Sturm-Liouville problem has solution with  2

nn λµ −= : 
 

eigenvalues        nλ  are positive roots of equation 0LsinHLcos n2 =+ λλλ  
 
eigenfunctions       ( ) xsinxX nn λ=  

 
Then solutions of the second differential equation 0TaT 22

n =+′′ λ  are  

( ) atsincatcosctT n2n1n λλ +=  
 
Solution:        ( ) ( )( )n n n n 1 n 2 nu x,t X T sin x c cos at c sin atλ λ λ= = +  

Then solution of the wave equation is a superposition  

( ) ( )( )n n n n n
n 1

u x,t sin x b cos at d sin atλ λ λ
∞

=

= +∑  
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initial conditions:   0t =   ( ) ( ) ( )n n 0
n 1

u x,0 b sin x u xλ
∞

=

= =∑  

 
which is a generalized Fourier series expansion of the function ( )xf  
over the interval ( )L,0  with coefficients 

( ) ( )
L L

0 n 0 n
0 0

n L
2 n

n
n0

u x sin xdx u x sin xdx
b

sin 2 LL
sin xdx

2 4

λ λ

λ
λ

λ

= =
−

∫ ∫

∫
 

 
The derivative with respect to t of the assumed solution is 

( ) ( )∑
∞

=

+−=
∂

∂

1n
n2nnnn atcosdatsinbxsina

t
t,xu λλλλ  

Then the second initial condition yields 

0t =    ( ) ( )xuxsinad
t

0,xu
1nn

1n
n ==

∂
∂ ∑

∞

=

λλ  

It can be treated as a Fourier series with coefficients 
 

ad nnλ
( ) ( )

n

n

L

0
n1

L

0
n

2

L

0
n1

4
L2sin

2
L

xdxsinxu

xdxsin

xdxsinxu

λ
λ

λ

λ

λ

−
==

∫

∫

∫
 

then 

nd
( )









−

=
∫

n

n
n

L

0
n1

4
L2sin

2
La

xdxsinxu

λ
λλ

λ
 

 
 
Then the solution of the initial-boundary value problem is: 
 

 

3.  Solution        ( )t,xu  ( ) ( ) ( )n n n n n
n 1

b cos a t d sin a t sin xλ λ λ
∞

=

= +  ∑  

 
 

( )t,xu  
( )

( )
( ) ( )

( ) ( )
( )

L

1 nL
n 0

0 n n n
n 1 n0n

n

u x sin x dx
sin x

u x sin x dx cos at sin at
asin 2 LL

2 4

λ
λ

λ λ λ
λλ

λ

∞

=

  
     = +        −        

∫
∑ ∫  
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 4. Normal modes of string vibration The solution of the Wave Equation is obtained as a sum of terms 

         ( ) ( )( )n n n n 1 n 2 nu x,t X T sin x c cos at c sin atλ λ λ= = +  

which we call the basic solutions. However, in the context of contributions 
to the vibration of a string, these functions are known as normal modes.   
In our example, for n 1,2,3,4,...= , they have the following shapes  
(see the Maple the file for animation): 

  
         > m1:=subs(n=1,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))): 
         > animate({m1},x=0..L,t=0..9); 

         

         > m2:=subs(n=2,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))): 
         > animate({m2},x=0..L,t=0..9); 

         

         > m3:=subs(n=3,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))): 
         > animate({m3},x=0..L,t=0..9); 

         

         > m4:=subs(n=4,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))): 
         > animate({m4},x=0..L,t=0..9); 

         
 

         overtones The first of these normal modes is called the fundamental mode, while the 
others are referred to as the first overtone, the second overtone, and so on.  
The frequency of oscillation of the normal mode increases with its number 
and is determined by the corresponding eigenvalue nλ  and coefficient a , 
which has a physical meaning related to the speed of wave propagation 
(speed of sound). Fixed points exist in the vibration of overtones.  

 
 The entire motion of the string is a superposition of vibration of all   

overtones with a different amplitude.  The participation of different modes 
in the string’s vibration is determined by the initial conditions.  

If representing the initial shape of the string at rest requires the use of 
different modes, then all of them will be present in the undamped vibration 
of the string.   

standing waves  However, if the initial shape of the string exactly matches one of the 
overtones, then only that mode will be present in the string’s vibration.   

This phenomenon is known as standing waves. Standing waves do not 
propagate; they only oscillate, maintaining the same shape.  

fundamental mode

first overtone

second overtone

third overtone
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                        THE WAVE EQUATION      Cylindrical Coordinates 
 

                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TRANSIENTPROBLEM - HE

( ) [ ) [ ] ( ) 3
1r , ,z 0,r , 0,Lθ π π∈ × − × ⊂ t 0>

STEADY STATE PROBLEM - PE

( ) ( ) ( )su r , ,z,t u r, ,z U r, ,z,tθ θ θ= +

TRANSIENT SOLUTION

( )
2

2
2 2

1 uu F r, ,z
v t

θ ∂
∇ + =

∂

[ ]Su f=

[ ]
0

0t tu u
=

=

2
2

2 2

1 UU
v t

∂
∇ =

∂

[ ]SU 0=

[ ]
0

0 st tU u u
=

= −

( )2
su F r, ,z 0θ∇ + =

[ ]s S
u f=

( ) ( ) ( )U r, ,z,t r , ,z T tθ Φ θ=

2Φ β Φ∇ =
2

1 T
Tv

β
′′

=

( )2 2
nmk nm kβ λ ω= − +

nm n kR ,  ,  ZΘ

( ) ( ) ( )2 2
nmk 1 nmk 2 nmkT t c cos v t c sin v tβ β= +

( ) ( ) ( )su r , ,z,t    u r , ,z   U r, ,z,tθ θ θ= +

HELMHOLTZ EQUATION

SEPARATION OF VARIABLES

SOLUTION OF IBVP

[ ]Su f=

[ ]Su f=

( ) ( ) ( )U r, ,z,t r , ,z T tθ Φ θ=

see   p.654 for the case of solid cylinder, and
       p.658 for the case of hollow cylinder

( ) ( ) [ ] ( ) 3
1 2r , ,z r ,r , 0,Lθ π π∈ × − × ⊂ 

solid cylinder

hollow cylinder

0

0
t t

u u
t =

∂  = ∂ 

0

1
t t

U u
t =

∂  = ∂ 

Θ ηΘ′′ =

( ) ( )2Θ θ π Θ θ+ =

SLP
⇒

2
n nη = − ( ) ( ) ( )n n na cos n b sin nΘ θ θ θ= +

0 0η = ( )0 1Θ θ =

SLP
⇒

Z Zγ′′ =

2
k kγ ω= −

2
k k kZ Zω′′ = −

( )kZ z

[ ]z 0Z 0
=

=

[ ]z KZ 0
=

=

2

2

1 nR R R R
r r

µ′′ ′+ − =

SLP
⇒

2
nm nmµ λ= −

2
2

nm nm nm nm2

1 nR R R R
r r

λ′′ ′+ − = −

2
n nnΘ Θ′′ = − n 0,1,2,...=

( )2 2 2 2
nm nm nm nmr R rR r n R 0λ′′ ′+ + − =

( ) ( )nm n nmR r J rλ=

( )R 0 < ∞

( )1R r 0= ( ) ( ) ( ) ( )r, ,z R r Z zΦ θ Θ θ=

n 0,1,2,...=

( )m 0 ,1,2,...=

STEADY STATE SOLUTION

boundary conditions

initial conditions

initial conditions

supplemental eigenvalue problems

2 1 T
T

Φ β
Φ α

′′∇
= =
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  VIII.3.5.2    1-D polar coordinates  Wave Equation in polar coordinates with angular symmetry 
 
 

           
2 2

2 2 2

u 1 u 1 u
r rr v t

∂ ∂ ∂
+ =

∂∂ ∂
                ( )t,ru ,  10 r r≤ <  , 0t >  

 
 
                                              Initial conditions:  ( ) ( )0u r,0 u r=         

               
( ) ( )1

u r,0
u r

t
∂

=
∂

      

          Boundary condition: ( ) 0t,ru 1 =     0t >              (Dirichlet) 

               ( ),u 0 t < ∞    
  
1.  Separation of variables    Assume  

( ) ( ) ( )u r, y R r T t=   
Substitute into the equation 

          2

1 1R T RT RT
r v

′′ ′ ′′+ =   

After separation of variables (division by RT), we receive  

          2

R 1 R 1 T
R r R Tv

µ
′′ ′′

+ = =    with a separation constant µ .    

         
      boundary condition     1rr =   ( ) ( ) ( )1 1u r ,t R r T t 0= =   ⇒   ( ) 0rR 1 =  

 
 
2.  Solution of Sturm-Liouville problem Consider the equation for ( )rR  for which we have a homogeneous 

boundary condition: 

          0RR
r
1R =−′+′′ µ  ( ) 0rR 1 =  

That is the Eigenvalue problem for the Bessel equation of th0  order, 
solution for which is presented in VII.2, p.509. 

Separation constant    2
n nµ λ= −   

Eigenfunctions    ( ) ( )n 0 nR r J rλ=   

Eigenvalues are the roots of  ( )0 n 1J r 0λ =  
 

The figure shows the graph of the function ( ) ( )10 rJw λλ =  with 1r1 =   

                                         
 
          The weight function   ( )p r r=   

          Orthogonality    ( ) ( )
1r

0 n 0 m
0

J r J r r dr 0λ λ =∫   for n m≠   

          Norm      ( ) ( )2 2 2
n 1 1 n 1p

R r r J r 2λ=  
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solution for T       The result of a negative separation constant 2λµ −=  agrees with a  
physical sense of solution for ( )tT .  Equation for T 

2
n2

1 T
Ta

µ λ
′′

= = −    

Then solutions ( )tTn  with determined eigenvalues are 

( ) ( ) ( )cos sinn n n n nT t a v t b v tλ λ= +    

3.  Solution ( ) ( ) ( ) ( ), cos sinn n n n 0 n
n 1

u r t a v t b v t J rλ λ λ
=

 = + ∑  

           
We will choose the values of coefficients in such a way that initial  
conditions are satisfied. 
 

4.  Initial conditions      Consider the first initial condition 

          ( ) ( ) ( )n 0 n 0
n 1

u r,0 a J r u rλ
∞

=

= =∑  

          then coefficients for the generalized Fourier series are defined as 
 

          
( ) ( )

( )

1

1

r

0 0 n
0

n r
2
0 n

0

u r J r r dr
a

J r r dr

λ

λ
=

∫

∫
        

( ) ( )

( )

1r

0 0 n
0

n 2 2
1 1 n 1

ru r J r dr
a

r J r 2

λ

λ
=

∫
 

          The second condition for the derivative with respect to time 

          ( ) ( )( )0 n n n n n n n
n 1

u r,t
J r a v sin vt b v cos vt

t
λ λ λ λ λ

∞

=

∂
= − +

∂ ∑  

          becomes 

          
( ) ( ) ( )n n 0 n 1

n 1

u r,0
b v J r u r

t
λ λ

∞

=

∂
= =

∂ ∑  

          Then coefficients in this generalized Fourier expansion are 
 

          
( ) ( )

( )

1

1

r

1 0 n
0

n n r
2
0 n

0

u r J r r dr
b v

rJ r r dr

λ
λ

λ
=

∫

∫
   ⇒       

( ) ( )

( )

1r

1 0 n
0

n 2 2
n 1 1 n 1

ru r J r dr
b

v r J r 2

λ

λ λ
=

∫
  

 
Then solution of the initial-boundary value problem is 

 

5.  Solution   ( ) ( ) ( ) ( )n n n n 0 n
n 1

u r,t   a cos vt b sin vt J rλ λ λ
∞

=

 = + ∑  

 
            

      ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( )

1 1r r2
0 n1

0 0 n n 1 0 n n 2
n 1 n0 0 1 n 1

J rr 1u r,t u r J r r dr cos vt u r J r r dr sin vt
2 v J r

λ
λ λ λ λ

λ λ

∞

=

     = +    
        

∑ ∫ ∫  
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    VIII.3.6          SINGULAR STURM_LIOUVILLE PROBLEM – CIRCULAR STRING 
 

We studied a regular Sturm-Liouville Problem in which the ordinary differential 
equation is set in the finite interval and both boundary conditions do not vanish.  
In a singular Sturm-Liouville problem not all of these conditions hold.  Usually, 
the interval is not finite, and one or both boundary conditions are missing.  
Instead of boundary conditions, when the solution may not exist at the 
boundaries, the eigenfunctions should satisfy some limiting conditions.  One of 
such requirements can be the following: 
Let 1y  and 2y  be eigenfunctions corresponding to two distinct eigenvalues 1λ  
and 2λ , correspondingly.  Then they have to satisfy the following condition: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
2 1

1 2 2 1 1 2 2 1
x x x x
lim p x y x y x y x y x   lim p x y x y x y x y x

− +→ →
′ ′ ′ ′− = −      

  
In the other cases the absence of boundary conditions is because of the 
periodical or cycled domain, when we demand that the solution should be 
continuous and smooth 

( ) ( )21 xyxy =  and ( ) ( )21 xyxy ′=′  
In this case, it is still possible to have the orthogonal set of solutions ( ){ }xyn  on 
[ ]21 x,x . 
We will not study the formal approach to solution of such problems, but rather 
discuss the practical examples of its application.  
Here, we consider an interesting example of a singular SLP in a cycled domain 
with no boundary conditions.  Physical demonstration of this example can be 
seen on the ceiling of the hall of the Eyring Science Building. 
 
Example 1 Consider vibration of a thin closed ring string of radius r  

described in polar coordinates by deflection over the plane 0z =   
( )t,u θ , [ ]πθ 2,0∈  , 0t >   

The Wave Equation reduces to  

2

2
2

2

2

2 t
uau

r
1

∂
∂

=
∂
∂
θ

  r const=  

with initial conditions 
( ) ( )θθ 0u0,u =  

( ) ( )θθ 1u0,
t
u

=
∂
∂  

There are no boundaries for a closed string, but rather a physical 
condition for a continuous and smooth string: 

( ) ( )t,2ut,0u π=  0t >  

( ) ( )t,2ut,0u π
θθ ∂

∂
=

∂
∂  0t >  

 
separation of variables   Assume     ( ) ( ) ( )u ,t   T tθ θ= Θ  

        Substitute into equation 2
2

1 T  a   T
r

′′ ′′Θ = Θ   

        Separate variables  µ
Θ
Θ

=
′′

=
′′

T
Tra 22           µ  is a separation constant 

 

        Consider    µ
Θ
Θ

=
′′

 

              0=−′′ ΘµΘ  
We already have experience with solution of this special equation for regular 
Sturm-Liouville Problems and know that in all cases except the case of both 
boundary conditions of Neumann type, only a negative separation constant , 
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2λµ −= , generates eigenvalues and eigenfunctions.  General solution in this 
case is 

( ) λθλθθΘ sinccosc 21 +=  
This solution suits our problem because it is periodic.  The values of λ  which 
satisfy periodicity on the interval [ ]πθ 2,0∈ , are 

n
2
n2

n ==
π
πλ  

Therefore, solutions are 
( ) θθθΘ nsincncosc n,2n,1n +=  

Obviously, that for all ,...2,1,0n =   π2 is a period for this solution and for its 
derivative  

( ) θθθΘ ncosncnsinnc n,2n,1n +−=′  

With these values of the separation constant, 22
nn n−=−= λµ , ,...2,1,0n =  

consider the equation for  ( )tT : 

222 n
T
Tra −=

′′
 

0T
ra

nT 22

2

=+′′  

which also has a periodic (in t ) general solution 

( ) t
ar
nsinct

ar
ncosctT n,4n,3n +=  

Then periodic solution of the wave equation can be constructed in the form of an  
infinite series: 

( ) ( ) ( )tTt,u θΘθ =  ( ) ( )∑
∞

=

=
0n

nn tTθΘ  

     ( )∑
∞

=






 ++=

0n
n,4n,3n,2n,1 t

ar
nsinct

ar
ncoscnsincncosc θθ  

∑
∞

=






 +++=

0n
n,4n,2n,3n,2n,4n,1n,3n,1 t

ar
nsinnsincct

ar
ncosnsincct

ar
nsinncoscct

ar
ncosncoscc θθθθ  

∑
∞

=






 +++=

0n
n,4n,3n,2n,1 t

ar
nsinnsinbt

ar
ncosnsinbt

ar
nsinncosbt

ar
ncosncosb θθθθ  

 
where coefficients b  are new arbitrary constants which can be chosen in such a 
way that this solution will satisfy the initial conditions. 
Consider the first initial condition: 

0t =  ( ) ( )θθ 0u0,u =   ( )∑
∞

=

+=
0n

n,3n,1 nsinbncosb θθ  

      ( )∑
∞

=

++=
1n

n,3n,10,1 nsinbncosbb θθ   

 
which can be treated as a standard Fourier series expansion of the function 

( )θ0u  on the interval [ ]π2,0 .  Therefore, the coefficients of this expansion are 
 

( )∫=
π

θθ
π

2

0
00,1 du

2
1b  

( )∫=
π

θθθ
π

2

0
0n,1 dncosu1b  

( )∫=
π

θθθ
π

2

0
0n,3 dnsinu1b  
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For the second initial condition, differentiate the solution first with respect to t  

( )t,
t
u θ

∂
∂ ∑

∞

=






 +−+−=

0n
n,4n,3n,2n,1 t

ar
ncosnsin

ar
nbt

ar
nsinnsin

ar
nbt

ar
ncosncos

ar
nbt

ar
nsinncos

ar
nb θθθθ  

     
        then apply the second initial condition 

        ( ) ( )θθ 1u0,
t
u

=
∂
∂   ∑

∞

=






 +=

0n
n,4n,2 nsin

ar
nbncos

ar
nb θθ  

             ∑
∞

=






 ++⋅=

1n
n,4n,2n,2 nsin

ar
nbncos

ar
nb0b θθ  

 
        Where the coefficients are determined as 

        ( )∫=⋅
π

θθ
π

2

0
10,2 du

2
10b  

        ( )∫=
π

θθθ
π

2

0
1n,2 dncosu1

n
arb  

        ( )∫=
π

θθθ
π

2

0
1n,4 dnsinu1

n
arb  

 
Coefficient 0,2b  can be any constant, it will not influence the initial speed of the 
string, but not to influence the initial shape of the string it has to be chosen equal 
to zero (otherwise, initially the string will shifted by 0,2b  and will not be 
centered over the plane 0z = ): 

0b 0,2 =  
Therefore, solution of the problem is given by the infinite series 
 

 

    ( )t,u θ ∑
∞

=






 ++++=

1n
n,4n,3n,2n,10,1 t

ar
nsinnsinbt

ar
ncosnsinbt

ar
nsinncosbt

ar
ncosncosbb θθθθ  

 
 

         where coefficients are determined according to abovementioned formulas. 
 
        Consider particular cases (Maple examples): 
 

1) isolated wave 

 
2) standing waves 
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VIII.3.7   REVIEW QUESTIONS, EXAMPLES AND EXERCISES 
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REVIEW QUESTIONS    1. What is the main assumption in the method of separation of variables? 

        2. What is a separation constant? 

3. How does the Sturm-Liouville problem manifest in the method of 

separation of variables? 

4. What is the form of the solution of the initial value problem (IVBP) in the 

method of separation of variables? 

5. How many terms are required in the truncated infinite series for an accurate 

representation of the solution? 

6. Can you provide an example when the solution of the IBVP is described 

just by a single-term trigonometric function?  How does this occur?  
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EXAMPLES AND EXERCISES 1.  Let  3D ⊂   be a domain (open connected set), and let S D\ D=   
be the boundary of D  (recall Section VIII.1.11, p.568). 

 
Show that if S∈r  is a point of the boundary of D , then any open ball 

( )B ,Rr  with a radius R 0>  includes points both from D  and 3 \ D ,  

i.e. intersection of any ( )B ,Rr  with the domain and with the surroundings 
is not empty: 

         ( )B ,R D∩ ≠ ∅r  and ( ) ( )3B ,R \ D∩ ≠ ∅r  . 

 
 
Remark: this property is usually used as the more general definition of 
the boundary: 

         If nA ⊂   is an arbitrary subset of n
  (not necessarily domain),  

then nx ∈   is called a boundary point of A  if for any radius R 0> : 
         ( )B x,R A∩ ≠ ∅  and ( ) ( )nB x,R \ A∩ ≠ ∅ .   

Then the set { }nA x x is boundary point of A∂ = ∈  is called the boundary 

of A  in n
 .   

 
If S D\ D=  is the boundary of domain D , the S  is the boundary of S in 
general sense too. 

 
         Examples of the boundary in general sense:  
 

a) ( ] { }0,1 0,1∂ =  

         b) { } { }a a∂ =            (the boundary of an insulated point is the point itself) 
         c)  ∂ =   
         d)  ∂ =   
         e)  ∂ ∅ = ∅  
         f) n ∂ = ∅  

         g) { }1 1n n 0
n n

   
∂ ∈ = ∈ ∪   

   
   

    
 
 

2. a)    Solve the Dirichlet problem for the Heat Equation:        

        
t
ua

x
u 2
2

2

∂
∂

=
∂
∂                ( )t,xu :    [ ]L,0x ∈ , 0t >    

 
                Initial condition:   ( ) ( )xuxu 00, =  
   
          Boundary conditions:  ( ) 0t,0u = , 0t >   (Dirichlet) 
                ( ) ,0t,Lu =  0t >   (Dirichlet) 
  
         b)   Sketch the graph of solution for L=3 and a=0.1 and initial conditions: 
 

i) ( ) 10 =xu   
          ii)   ( ) ( )xLxxu −=0  
          iii)   ( ) xxu 2sin0 =   
 
 

D

domain D is an open set

D is a closure of the domain D  
    is a closed set 

D

D

boundary  S D\ D=

D

( )B ,Rr

r
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3.  The Superposition Principle for Non-Homogeneous Heat Equation with 
Non-Homogeneous Boundary Condition.: 

 
         Heat Equation: 

       ( )
2

2
2

u uF x a
tx

∂ ∂
+ =

∂∂
     ( )t,xu :    ( )x 0,L∈ , 0t >    

 
               Initial condition:    ( ) ( )xuxu 00, =  
   
         Boundary conditions:   ( ) 0u 0,t g= , 0t >    (Dirichlet) 

                
( )

L

u L,t
g ,

x
∂

=
∂

 0t >   (Neumann) 

 
       Supplemental problems  a) steady state solution: 

              ( )
2

s
2

u
F x 0

x
∂

+ =
∂

    ( )xus :    ( )x 0,L∈   

                ( )s 0u 0 g=     

                ( )s
L

u
L f

x
∂

=
∂

 

    
              b)  transient solution: 

              
t

Ua
x
U

∂
∂

=
∂
∂ 2

2

2

    ( )txU , :  ( )x 0,L∈ , 0t >  

  
                      ( ) ( ) ( )xuxuxU s−= 00,  
                ( )U 0,t 0=   0t >       

    ( )U L,t 0=   0t >  
 

       First supplemental problem is a BVP for ODE.  
The second supplemental problem is an IBVP problem for the 
homogeneous Heat Equation with homogeneous boundary conditions. 

 
Show that ( ) ( ) ( )su x,t U x,t u x= +  is a solution of the non-homogeneous 
IBVP. 
 

       Solve the problem with  

( ) 0 LF x 5, g 1, g 3= = = and ( ) ( )0u x x 4 x= − . 

 
       Sketch the graph of the solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 



Chapter VIII  PDE                                  VIII.3  Transient Initial-Boundary Value Problems                                November 4, 2023                   
 

687 

4. a) Solve the IBVP:     
          

          ( )xF
t
ua

x
u 2
2

2

+
∂
∂

=
∂
∂      ( )t,xu ,  ( )L,0x ∈ , 0t >  

 
          initial condition:   ( ) ( )xuxu 00, =     
           
   
          boundary conditions:  ( ) 1u 0,t f=       0t >  (I)  

                ( ) ( ) 2

u L,t
k hu L,t f

dx
∂

+ =    0t >  (III)                                                                            

b)   Sketch the graph of solution with  

4L = , 5.0a = , 0.2k = ,  

( ) 2
0

Lu x x x 5
2

= − + , 10f1 = , 1f2 = , ( ) xxF =  

 
5. a)   Solve the IBVP for the Heat Equation in the plane wall with distributed  

heat generation:     
          

          ( )
2

2

u 1 uF x
tx α

∂ ∂
+ =

∂∂
,  ( )t,xu ,    ( )L,0x ∈ ,  0t > , ( ) qF x x

k
=


 

 
          Initial Condition:   ( ) ( )xuxu 00, =     
           

          Boundary Conditions:  
( )u 0,t

0
x

∂
=

∂
      0t >  

                ( ) ( )2

u L,t
k h T u L,t

dx ∞

∂
= −    0t >    

                                                                         
b)   Sketch the graph of solution with  

 
L 0.5= , 0.0005α = , k 150= ,  

( )0u x 200= , T 10∞ = , 2h 250= , q 200000=  

 
 

6. a) Solve the Heat Equation in the cylindrical domain with angular  
symmetry 

          
2

2
2

u 1 u ua
r r tr

∂ ∂ ∂
+ =

∂ ∂∂
  ( )z,ru :     1rr0 <≤ , t 0>                                        

   
          Boundary condition:  ( )1u r ,t 0=    t 0>  

          Initial condition    ( ) ( )0u r,0 u r=   
          
         b) Sketch the graph of the solution for 

          

( )

1

2
0

r 0.5
a 3
u r 6r 1

=
=

= +
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7. a) Solve the Heat Equation in the cylindrical domain with angular  
symmetry 

          
2

2
2

u 1 u ua
r r tr

∂ ∂ ∂
+ =

∂ ∂∂
  ( )z,ru ,    1rr0 <≤ ,  t 0>                                        

  
          Boundary condition:  ( )1 1u r ,t f=      t 0>  

          Initial condition    ( ) ( )0u r,0 u r=            
            
         b) Display some creativity in visualization of solution for 

          

( )

1

1
2

0

r 0.5
a 3000
f 70

u r 25r 20

=
=
=

= +

 

 
         c)   Give some physical interpretation of the problem 
 
 

8. Solve the IBVP for the Heat Equation in polar coordinates with angular  
symmetry: 

 

          
2

2
2

u 1 u ua
r r tr

∂ ∂ ∂
+ =

∂ ∂∂
     ( )t,ru ,   [ )1r 0,r∈ ,  0t >  

 
                      Initial conditions:    ( ) ( )0u r,0 u r=       
            

          Boundary condition: 
( ) ( )1

1 1

u r ,t
k hu r ,t f

r
∂

+ =
∂

   0t >   

 
          And sketch the graph of solution for  
          1r 2= , a 0.5= , k 0.1= , h 12= , 1f 2= ,  and ( ) ( )2

0 1u r r r= −  
 
          (hint: first, find the steady state solution) 
 
 

9. a) Solve the Heat Equation in the annular domain with angular symmetry  
(cylindrical wall with uniform heat generation) 

 

          
2

2

u 1 u q 1 u
r r k tr α

∂ ∂ ∂
+ + =

∂ ∂∂


 ( )u r,t :    1 2r r r< < ,  t 0>     

                                       
          Boundary condition:  ( )1 1u r ,t T=    t 0>  

                ( )2 2u r ,t T=   t 0>  

          Initial condition:   ( ) ( )0u r,0 u r=     1 2r r r< <         
            
         b) Display some creativity in visualization of the solution for 
 

          

1

2

r 0.5
r 0.6
k 150

0.00001α

=
=
=
=

    
( )

1

2

0

T 50
T 10
u r 10
q 500000

=
=

=

=
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  10.   EXAMPLE   Radiation Induced Thermal Stratification in Surface Layers of Stagnant Water 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Professor Raymond Viskanta (on the left) 

Antalya, Turkey, June 2001 
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T 5800K=


T 3250K⊗ =

Radiation Induced Thermal Stratification in Surface Layers of Stagnant Water 
 

Based on papers: [1] D.M.Snider, R.Viskanta  Radiation Induced Thermal Stratification in Surface  
Layers of Stagnant Water, ASME Journal of Heat Transfer, Feb 1975, pp.35-40. 

[2] R.Viskanta, J.S.Toor  Radiant Energy Transfer in Waters, Water Resources Research, 
Vol. 8, No.3, June 1972, pp. 595-608.  

 
Introduction: The vertical temperature distribution in a body of water have important effects on chemical 

and physical properties, dissolved oxygen content, water quality, aquatic life and ecological 
balance as well as mixing processes in water. 

 Solar radiation is recognized as the principle natural heat load in waters.  Some investigators 
have considered the radiation to be absorbed at the water surface (i.e. opaque) and others 
treated the water as being semitransparent but ignored the spectral nature of radiation.  Since 
the ultraviolet (UV) and infrared (IR) parts of the incoming solar radiation are largely 
absorbed within the first centimeters of the water and the visible part (VI) penetrates more 
deeply and carries significant energy to depths, the modeling of water as a gray medium is 
open to question and needs to be examined.  

 In the works of Raymond Viskanta (Purdue University) and coworkers, analysis for the time 
dependent thermal stratification of in surface layers of stagnant water by solar radiation was 
developed.  The transient temperature distribution is obtained by solving the one-dimensional 
energy equation for combined conduction and radiation energy transfer using a finite 
difference method. Experimentally, solar heating ( T 5800K=



) of water is simulated using 
tungsten filament lamps ( T 3250K⊗ = ) in parabolic reflectors of known spectral 
characteristics. 

 
Our Objective: Analytical investigation of transient combined conduction-radiation heat transfer with two 

band spectral model (VI-IR) of incident radiation. 
 
Spectral distribution of emissive power:    

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

q′′VI q′′IRreflectedq′′

x 0=

x L=

( )Q x

-1

 = extincton 
       coefficient
       of water, m

β

infrared radiation is 
completly absorbed 
by the surface of water

penetrated 
visible radiation 

1,   spectral absorption coefficient of liquid water
cmλβ  

  
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Model:      Heat equation:     ( )2

2

Q xu 1 u
k tx α

∂ ∂
+ =

∂∂
 

Initial condition:     ( ) ( )0 0u x,0 u x T= =  

       Boundary conditions:    ( )eff
x 0

uk h u T q
dx ∞

=

∂ ′′− = − − +  
IR   

         [ ] Lx Lu T
=

=    
 Source function  

(radiant energy absorption rate):     ( ) xQ x q e ββ −′′= VI     
 
Water Properties:       Extinction coefficient     70 β =     1m−  

       Density       1000ρ =    3

kg
m

 

       Specific heat      pc 4180=    J
kg K⋅

 

       Conductivity      k 0.6=     W
m K⋅

 

Data:      Length       L 0.381=    m  
       Temperature      0 inf LT T T 25= = =  oC  

       Visible irradiation    q 850′′ =VI    2

W
m

 

       Infrared irradiation    q 150′′ =IR    2

W
m

 

       Efficient convective coefficient effh 12=    2

W
m K⋅

 

a. Solve the given IBVP: 
 
     ( )u x,t =  
  

( )u 0.05m,3000s =  o28.3 C    particular value              
 
b. Sketch the graph of the solution for t 5,10,15,30,60,90 min=  and compare with Viskanta’s results. 
 
c. Your view on the problem.  How can the accuracy of the model be improved?  

What have you learned from this problem? 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 



Chapter VIII  PDE                                  VIII.3  Transient Initial-Boundary Value Problems                                November 4, 2023                   
 
692 

Solution: 

Heat equation:     
( )2

2

Q xu 1 u
k tx α

∂ ∂
+ =

∂∂
     ( ) xQ x q e ββ −′′= VI  

Initial condition:     ( ) ( )0 0u x,0 u x T= =  

Boundary conditions:    ( )eff
x 0

uk h u T q 0
dx ∞

=

∂ ′′− = − − + =  
IR   

  [ ] Lx Lu T
=

=    
    

        eff eff
x 0

uk h u h T q
dx ∞

=

∂  ′′− + = +  
IR  

        eff eff

x 0

h h T qu u
dx k k

∞

=

′′+ ∂
− + = 

 

IR  

        0
x 0

u Hu f
dx =

∂ − + =  
     effh

H
k

= , eff
0

h T q
f

k
∞ ′′+

= IR  

 

( )
2

2

u 1 uF x
tx α

∂ ∂
+ =

∂∂
   ( )x 0,L∈   ( ) xq

F x e
k

ββ −′′
= VI  

 

0
x 0

u Hu f
dx =

∂ − + =  
 

[ ] Lx Lu T
=

=  
 

( ) ( )0 0u x,0 u x T= =  
 
 
I Steady State Solution:  
 

 ( )
2

s
2

u
F x 0

x
∂

+ =
∂

   ( )x 0,L∈  

 
s

s 0
x 0

u
Hu f

dx =

∂ − + =  
 

[ ]s Lx L
u T

=
=  

 
 

 ( )
2

s
2

u
F x 0

x
∂

+ =
∂

 

 ( )
2

xs
2

u q
F x e

kx
ββ −′′∂

= − = −
∂

VI  

 
2

xs
2

u q
e dx

kx
ββ −′′∂

= −
∂ ∫VI  

 
( ) ( )

2
xs

2

u q 1 e d x
kx

ββ
β

β
−′′∂

= − −
−∂ ∫VI  

 xs
1

u q
e c

x k
β−′′∂

= +
∂

VI  

 x
s 1 2

q
u e dx c x c

k
β−′′

= + +∫VI  
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 x
s 1 2

q
u e c x c

k
β

β
−′′

= − + +VI  

 
Boundary conditions: 
 

x 0=   x x
1 1 2 0

x 0

q q
e c H e c x c f

k k
β β

β
− −

=

′′ ′′   − + + − + + =   
    

VI VI  

   1 2 0
q q

c H c f
k kβ
′′ ′′  − + + − + =  

   
VI VI  

   1 2 0
q Hc Hc 1 f
k β
′′  

− + = + + 
 

VI   eff
0

h T q
f

k
∞ ′′+

= IR  

   1 2 eff
1 Hc Hc 1 q h T q
k β ∞

   ′′ ′′− + = + + +  
  

VI IR  

   eff
1 eff 2 eff

h
kc h c 1 q q h T

kβ ∞

 
′′ ′′− + = + + + 

 
VI IR  

x L=   L
1 2 L

q
e c L c T

k
β

β
−′′

− + + =VI  

   L
1 2 L

q
c L c e T

k
β

β
−′′

+ = +VI  

 
In matrix form: 
 

eff
eff

1eff

2 L
L

h
1 q q h T

ck h k
cL 1 q

e T
k

β

β

β

∞

−

  
′′ ′′+ + +  −      =    ′′     +

  

VI IR

VI

 

 
Use Cramer’s Rule: 
 

( )eff
eff

k h
det k h L

L 1
− 

= − + 
 

 

 

( )

eff
eff eff

eff LL
eff eff eff LL

1
eff eff

h
1 q q h T h

k
det

h qq 1 q q h T h e h Te T 1
k kk

c
k h k h Ldet

L 1

ββ

β

β ββ

∞

−−
∞

  
′′ ′′+ + +  

  
  ′′ ′′ ′′ ′′+ + + − −+   
    = =

−  − +
 
 

VI IR

VIVI
VI IR

 

 
 
 
 

( )

( )

eff L
eff L eff

1
eff

h q1 q q h T T h e
k k

c
k h L

β

β β
−

∞

′′ 
′′ ′′+ + + − − 

 =
− +

VI
VI IR

  

 

 := c1
 +  +  +  − h Tinf qir q0 q0 h

k β








 + TL q0 e

( )−β L

k β
h

−  − k L h
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( )

eff
eff

effLL
L effL

2
eff eff

h
k 1 q q h T

k
det

hqq k e kT L 1 q q L h T LL e T
k kk

c
k h k h Ldet

L 1

ββ

β

β ββ

∞

−−
∞

  
′′ ′′− + + +  

  
  ′′  ′′ ′′ ′′− − − + − −+   
    = =

−  − +
 
 

VI IR

VIVI
VI IR

 

 

( )

effL
L eff

2
eff

hq e kT L 1 q q L h T L
k

c
k h L

β

β β
−

∞

′′  
′′ ′′+ + + + + 

 =
+

VI
VI IR

  

 
 
 

( )

( ) ( )

eff effL L
eff L eff L eff

x
s

eff eff

h hq q1 q q h T T h e e kT L 1 q q L h T L
k k kq

u e x
k k h L k h L

β β

β β β β β
β

− −
∞ ∞

−

 ′′ ′′   
′′ ′′ ′′ ′′+ + + − − + + + + +    ′′     = − + + − + +

 
  

VI VI
VI IR VI IR

VI

 
 
II Transient Solution:  ( ) ( ) ( )sU x,t u x,t u x= −  
 
 

2

2

U 1 U
tx α

∂ ∂
=

∂∂
   ( )x 0,L∈    Supplemental SLP (RD): 

 

x 0

U HU 0
dx =

∂ − + =  
  R     nλ   roots of characteristic equation: 

[ ]x LU 0
=

=     D     ( )n nX sin x Lλ= −        2
nX  

 
( ) ( ) ( ) ( )0 s 0U x,0 u x u x U x= − =  

 
 

Solution:     ( ) 2
n t

n n
n 1

U x,t a X e αλ−

=

= ∑   ( ) ( ) ( )
L

n 0 s n2
0n

1a u x u x X x dx
X

= −  ∫  

 
 
III  Solution:    ( ) ( ) ( )su x,t u x U x,t= +  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 := c2
−  − k









 + TL q0 e

( )−β L

k β
L 






 +  +  + h Tinf qir q0 q0 h

k β
−  − k L h
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> U0:=subs(t=0,u(x,t)): 
> U1:=subs(t=300,u(x,t)): 
> U2:=subs(t=600,u(x,t)): 
> U3:=subs(t=900,u(x,t)): 
> U4:=subs(t=1800,u(x,t)):   30 min  
> U5:=subs(t=3600,u(x,t)): 
> U6:=subs(t=5400,u(x,t)):   90 min  
  
 
Comparison 
 
Current analytical solution              Experimant and numerical solution [Viskanta] 
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11. Find the solution of the IBVP for the Wave Equation 
                                                       

         2

2

22

2

t
u

a
1

x
u

∂
∂

=
∂
∂               ( )t,xu ,  ( )L,0x ∈ , 0t >  

 
                                 initial condition:   ( ) ( )0u x,0 u x=     

               
( ) ( )1

u x,0
u x

t
∂

=
∂

      

         boundary conditions:  ( )u 0,t 0=    0t >               (Dirichlet) 

               ( )u L,t 0=   0t >    (Dirichlet)                                                                           
     
         Sketch the graph of solution with 2L = , 5.0a = , and  
 
         a)  ( )1u x 0.1= − , ( ) 2 2

0u x x ( L x )= −    
 

         b)  ( )1u x 0= , ( )0
6u x sin x
L
π

=     

         (observe the phenomena called standing waves) 
 

12. Find the solution of the IBVP for the Wave Equation 
                                                       

         2

2

22

2

t
u

a
1

x
u

∂
∂

=
∂
∂               ( )t,xu ,  ( )L,0x ∈ , 0t >  

 
                                 initial condition:   ( ) ( )0u x,0 u x=     

               
( ) ( )1

u x,0
u x

t
∂

=
∂

    

   
         boundary conditions:  ( ) ( )1u 0,t H u 0,t 0′− + = ,  0t >  (Robin) 

               ( )u L,t 0=     0t >  (Dirichlet)                                                                          
   
         Sketch the graph of solution with L 5= , a 2.0= , and  
 
         a)  ( )1u x 0.2= , ( ) 2

0u x ( L x )= −    

         b)  ( )1u x 0= , ( ) ( )0 5u x X x=    (eigenfunction) 
     

13. a)  Solve the IBVP:     
          

         ( )xF
t
ua

x
u 2
2

2

+
∂
∂

=
∂
∂      ( )t,xu ,  ( )L,0x ∈ , 0t >  

 
         initial condition:   ( ) ( )xuxu 00, =     
           
   
         boundary conditions:  ( ) 1u 0,t f=      0t >      (Dirichlet) 

               ( ) ( ) 2

u L,t
k hu L,t f

dx
∂

+ =  0t >   (Robin)                                                                            

b)   Sketch the graph of solution with  

4L = , 5.0a = , 0.2k = , ( )0u x x( x L / 2 ) 5= − + , 10f1 = , 1f2 = , ( ) xxF =  
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14A. Find the solution for vibration of the annular membrane with angular  
  symmetry: 

 

         
2 2

2
2 2

u 1 u ua
r rr t

∂ ∂ ∂
+ =

∂∂ ∂
    ( )t,ru ,  ( )1 2r r ,r∈ ,  0t >  

 
                     Initial conditions:   ( ) ( )0u r,0 u r=  

               ( ) ( )1
u r,0 u r
t

∂
=

∂
        

          
         Boundary condition:  ( )1u r ,t 0=     0t >   

               ( )2u r ,t 0=     0t >   
 
         And sketch the graph of solution for  
 
         1r 1= , 2r 2= a 0.5= , ( ) ( )( )0 1 2u r r r r r= − − ,  and ( )1u r 0= . 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

14B.   Heavy membrane 
 

Find the solution for vibration of the annular membrane with angular  
symmetry: 

 

         ( )
2 2

2
2 2

u 1 u uF r a
r rr t

∂ ∂ ∂
+ + =

∂∂ ∂
    ( )t,ru ,  ( )1 2r r ,r∈ ,  0t >  

 
                     Initial conditions:   ( ) ( )0u r,0 u r=  

               ( ) ( )1
u r,0 u r
t

∂
=

∂
        

          
         Boundary condition:  ( )1u r ,t 0=     0t >   

               ( )2u r ,t 0=     0t >   
 
         And sketch the graph of solution for  
 
         1r 1= , 2r 2= a 0.5= , F 1.5= − , ( ) ( )( )0 1 2u r r r r r= − − ,  and ( )1u r 0= . 
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Non-Classical IBVPs 
 
15. (Flow Between Two Plates) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

2 2
p p

2 2

c cT T T q Tv
k x k k tx z

ρ ρ∂ ∂ ∂ ∂
+ − + =

∂ ∂∂ ∂


 

 
x 0=  eT T=         
x → ∞  T < ∞  
z 0=  wT T=  
z L=  wT T=  
t 0=  0T T=  

 
Find steady state solution for q 0= . 
Sketch the graph for eT 80= , wT 10= , v 2= , L 0.02= , fluid is water. 

 
 
 
16. (Transient Conduction in the Fin)   
 
 
 
 
 
   
 
 
 
 

( )
2

p
2

c

cT hP q TT T
kA k k tx

ρ
∞

∂ ∂
− − + =

∂∂


 

 
x 0=  bT T=         
x L=  LT T=  
t 0=  0T T=  

 
Find transient state solution for q 0= . 

 
circular copper fin ( D 0.005= ) 

 
Sketch the graph for  bT 200= , LT 50= , T 10∞ = , 0T 10= , h 150= , L 0.2= ,  

 

L

0

y

x

z

v

wT

wT

eT

L
x

0

h,T∞

bT LT
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17. [Based on Nellis&Klein, p.37] Absorption in a lens 
 

Analytical investigation of transient combined conduction-radiation heat transfer with a gray spectral model of 
incident radiation. 
 
A lens is used to focus the illumination radiation that is required to develop the resist in a lithographic 
manufacturing process 

 
The lens is not perfectly transparent but rather absorbs some of the illumination energy that passes through it. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Model:      Heat equation:     
( )2

2

Q xu 1 u
k tx α

∂ ∂
+ =

∂∂
 

Initial condition:     ( ) ( )0 0u x,0 u x T= =  

       Boundary conditions:    ( )eff
x 0

uk h u T
dx ∞

=

∂ − = − −  
  

         ( )eff
x L

uk h u T
dx ∞

=

∂ = − −  
   

 Dissipation source function  
(radiant energy absorption rate):     ( ) x

0Q x q e ββ −′′=     
 
The Lens Properties:      Extinction coefficient     100β =    1m−  

       Density       2500ρ =    3

kg
m

 

       Specific heat      pc 750=    J
kg K⋅

 

       Conductivity      k 1.5=     W
m K⋅

 

Data:      Length       L 0.1=     m  

       Temperature      inf 0T T 20= =   oC  

       Incident radiative flux    0q 1000′′ =    2

W
m

 

       Efficient convective coefficient effh 20=    2

W
m K⋅

 

0q′′

x 0=

x L 0.1m= =

( ) ( )qq x x
x
′′∂

= −
∂

-1

 = extincton 
       coefficient
       of water, m

βdissipation of the net 
radiative flux into heat

eff

convective-radiative
surroundings with
       T  ,h∞

incident radiative flux

transmitted radiation
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a. Solution of  the given IBVP: 
 
      
 

( )u x,t =  
 
 
 
 

 
  

               
 
 
b. Steady State Solution: 
 
  
 

( )U x =  
 
 
 
 

 
 
 
 
 
 
c. Sketch the graph. 
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18. Investigate the temperature field in the long column of square cross-section two adjacent sides of which are 
thermally insulated and two others are maintained at temperatures o

1T 100 C=  and o
2T 500 C=  if initially it 

was of uniform temperature o
0T 20 C= .  Sketch the temperature surfaces. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

19. Use separation of variables for solution of IBVP for long cylinder with angular symmetry. u 0
θ

∂ = ∂ 
:  

 

       
2 2

2 2

u 1 u u g 1 u
r r k tr z α

∂ ∂ ∂ ∂
+ + + =

∂ ∂∂ ∂
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

L 2m=

1r

r

0

1z

( )r,z
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20.   Set up a mathematical model (choose an appropriate coordinate system and dimension of the 

problem, write the governing equation and corresponding initial and boundary conditions) for the 
following engineering models (do not solve the problem): 

 
 

a)  A very thin long wire dissipates energy in the massive layer of the stagnant media with the rate 

per unit length q , 





m
W .  The media has a thermal conductivity k , 





⋅ Km
W .  Determine the 

stationary temperature distribution in the media. 
 

 
b)  In the massive layer of homogeneous material (with thermal properties pc,,k ρ ) which was 
initially at the uniform temperature 0T , a localized heat source spontaneously started to dissipate 
energy with the rate  q  [ ]W .  Determine the development of the temperature field in the material. 

 
 

c)  A very long tree trunk of radius R in the forest is exposed  to the surrounding air (average wind 

speed is v 





s
m ), but the dense crown prevents the direct sun radiation of the trunk.  Set up the 

mathematical model describing the temperature distribution in the tree trunk during the day. 
Conductivity in the tree depends on direction: it is much higher along the tree than in the radial 
direction. 

 

d)  A wide reservoir of water of L meters deep is exposed to the solar irradiation 0G , 





2m
W  

incident at the angle θ .  Penetration of the solar radiative flux along the path s is described by the 

Lambert-Beer Law ( ) s
0G x   G cos  e κθ −= , where κ , 





m
1  is the gray absorption coefficient of 

water.  Then the solar energy dissipated in water (radiative dissipation source or the divergence of 

radiative flux) is determined by ( ) ( )
dx

xdGsQ −= , 





3m
W .  Set up the mathematical model 

describing the equilibrium temperature field in the water layer. 
 
 
e)  Two opposite sides of the long column are insulated.  There is an intensive condensation of the 
water steam on one of the other sides.  The last side is exposed to the convective environment at 

temperature ∞T  and convective coefficient h , 





⋅ Km
W
2

.  Due to some chemical reaction there is 

production energy in the column with the volumetric rate q , 





3m
W .  Initially, column was at the 

uniform temperature 0T .  Describe the transient temperature distribution inside of the column. 
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Stanislaw Mazur and Per Enflo 
 

Stanislaw Mazur was a close collaborator with Banach at Lwów and 
was a member of the Lwów School of Mathematics, where he 
participated in the mathematical activities at the Scottish Café.  
On 6 November 1936, he posed the "basis problem" of determining 
whether every Banach space has a Schauder basis, with Mazur 
promising a "live goose" as a reward: Thirty seven years later, a live 
goose was awarded by Mazur to Per Enflo in a ceremony that was 
broadcast throughout Poland. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                           Lvov in 2009 
 

https://www.revolvy.com/topic/Per%20Enflo&item_type=topic
https://www.revolvy.com/topic/Lw%C3%B3w%20School%20of%20Mathematics&item_type=topic
https://www.revolvy.com/topic/Scottish%20Caf%C3%A9&item_type=topic
https://www.revolvy.com/topic/Approximation%20problem&item_type=topic
https://www.revolvy.com/topic/Banach%20space&item_type=topic
https://www.revolvy.com/topic/Schauder%20basis&item_type=topic
https://www.revolvy.com/topic/Per%20Enflo&item_type=topic
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