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1% order ODE Initial Condition
v'=f(ty) y(t)=s
LINEAR NON-LINEAR dijfe;}’ential‘form is' equivalfznt to
a pair of differential equations
dx
standard , differential M(x,y)—+N(x,y)=0
form y+p(0)y=2(1) form M (x,y)dx+N (x,y)dy =0 dy
: : d_,
M N(x,p) 2=
(%7)+ N (xy)—-
Separable Test for Exact (ode is exact if’)
. J. p(t)dt 0 0
Integrating Factor Hu=e M(x)dx+N(y)dy=0 @M(x,y):afN(x,y)
x
Genearl solution: General solution: Find f (x,y) such that

IM(x)dx+JN(y)dy:c

df(x,y) =M (x,y)dx+ N(x,y)dy

u(t) () T m(x Y N
. (%), o (x.2)
Solution of IVP y(t,)= y,: General solution
;
ulty) 1% f(xy)=c |
y() =y, +—— | u(s)g(s)ds )
w() ﬂ@i
change of variable multiplication by
reduces homogeneous integrating factor u
equation to separable makes equation exact
Equation with constant coefficients: Homogeneous equation Integrating Factor
V+ay=b use change of variable
y=ux xX=vy
General solution: oM ON
dy =udx+xdu | ° dx =vdy + ydv 0 o xX)ds
—w b ” Ty if ECVARC TS h(x) then y:ew o
y=ce N
@ back substitution o e sEmdany)
Solution of IVP y(1,)=y, ‘ u=y/x ‘ v=x/y
_ alin) b - .
y=e Yo —— |+— Equation is homogeneous if’
¢ o _om
¥ M (Ax,Ay)=A"M(x,y) if % =g(y) then ﬂzejg(v)dv
b/a N(ﬁ,x, ly) = l”N(x,y) does not depend on x
graph in
Yo a case of
a,b>0

To check that y(x) is a solution, substitute it into

To check that x( y) is a solution, substitute it into

d)
M(x,y)+N(x,y)Ey:0

dx
M(x,y)$+N(x,y):0
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1.3

Classification of Differential Equations

Differential equation

ODE

PDE

Systems of differential equations

Order of ODE

Normal ODE

Linear ODE

Non-Linear ODE

Solutionof ODE

Ivp

Existence of a solution

General solution

Particular solution

Uniqueness of a solution
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1.1 Direction fields

Consider the differential equation of the first order explicitly written for the derivative of unknown function y’
dy
— = t,
=/ (0y)
where f (t, y) is some given function of variables ¢ and y . Then we say that equation is written in normal form.

Derivative y'(7) defines the slope of the tangent line to the curve y = y(7) at the point 7.

y

If derivative y'() is given by the differential equation in normal form y' = £ (z,y),
then equation the tangent line to the curve y = y(7) at some fixed point (7,, y,) can be written as

equation of the tangent line:

y
y= f(t()’y(l)([_tr))+Yr)
Yol 7 i (toayo)
t
tﬂ
Construction of the direction field with Maple Problem 7./ #/ d_y =3-2y

dt

>restart;
>with (DEtools) :
>DE:=diff (y(x) ,x)=3-2*y(x);

d
DE .—ay(x) =3-2y(x)
Plotting the direction field and the solution curves satisfying the initial conditions with the help of DEplot command:

0)=0

P
P
Py

>DEplot (DE,y (x) ,x=-2..2,y=1..3,{[y
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(method of isoclines)

[y (0)=2], [y (0)=1.5]},color=black) ;
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2.4 Differences between linear and non-linear equations

Theorem 2.4.1  (existence and uniqueness of the solution of IVP for linear 1 order ODE y'+ p(t)y = g(¢))

Let 1, e(a,p) and

y
\ let p(1), g(r) € C(a.p) (continuous functions)
y=6(1)
then the linear differential equation y'+ p (t) y=g (t)
Yo
has a unique solution y =¢(1), t €(a,p)
such that y(z,) =y,
o—>
a fy B

Theorem 2.4.2 (existence and uniqueness of the solution of IVP for non-linear 1% order ODE ' = f ( y,t))

6f(y,t)

y Let f(».1), —5 © C((a,ﬂ)x(y,é‘)) (continuous)
v
\
5 andlet ¢, (e, B) andy, €(7.5)
y=¢(t)
Yo / then the non-linear differential equation y' = f ( y,t)
= l has a unique solution y =¢(z), t(t, —h.t,+h)=(a.B), h>0
L L, such that y(#,)=y,. Here, >0 is some positive number.
ay_p b oyen B

Remark: if only f(y,t)e C((a.B)x(.6)) is continuous, then

solution of IVP exists but is not necessarily unique.

Note: the theorems guarantee only that under given conditions there
exists a unique solution of the IVP, but they do not claim that the
solution does not exist if the conditions of the theorems are
violated.

Constant solutions y'=f(xy) if f(x,b)=0,then y=> is a solution
x'= g(x,y) if g(a,y) =0, then x=a is a solution
General Solution (implicit) F (x, Vv, c) =(0  Solution which includes an arbitrary constant.

General solution of linear ODE includes all
possible solutions (complete solution).

For non-linear ODE, there can be some
additional solutions.

Suppressed solutions Solutions not described by the general solution
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2.1 Linear ODE — Integrating Factor
Standard form y+p(t)y=g(t) Initial Condition:  y(z,) =y,
I . jp(l)d{
ntegrating factor u(t)=e
e
General solution y= +—— | u(t)g(z)dr
w(t) () j
c 1
y= + —jy (s) g (s) ds  (integral form of solution)
w(t)  ul);,
t 1 ¢
Solution of IVP y=y, A 0)+—j,u(s)g(s) ds
w(t)  u(t);
Case of a constant coefficient V' +ay=g(t)
Integrating factor u(t)=e"
General solution y=ce“ +e* j e g (1)dt
Solution of IVP y=y,e )+ e"”je‘” g(s)ds
Case g(t) =b = const y'+ay=>b
v
. —at b
General solution y=ce " +— bja
a
yn oo
: a,b>0
—ali— by b |
Solution of IVP y=e ( ¥, -—j += |
a) a ‘ ;
tﬂ
Exercise: Solve p'+2y=4  y(I)=2 and sketch the solution curve
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Example: Find a general solution of equation
y'+(cotx) y =sin 2x
and sketch the solution curves.

Solution: The integrating factor for this equation is

Icotxdx [n‘siﬂx‘ ;
=¢e =Sinx

,u(x) =e

Then a general solution is

=< 4 ! Isin(x)sin(Zx)dx

sinx sinx

= 4 2 Isin(x)sin(x)cos(x)dx

sinx Sinx

=< 4 2 fsinz(x)dsin(x)

sinx sinx

(double angle formula)

(u-substitution)

Sin x

Maple:

=

c 2sin’ x
+

3

create a sequence of particular solutions by varying the constant c,
and then plot the graph of solution curves:

>y (x) :=2*sin(x)*2/3+c/sin(x) ;

C

2 .
y(x):= 3 sin(x)? + sin(x)

>p:={seq(subs(c=i/4,y(x)) ,i=-20..20)}:

>plot(p,x=-2*Pi..2*Pi,y=-5..5);

a

X

T

X
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2 Separable equation

Note that equation in differential form

Differential form of ODE M (x,y)dx + N(x’ y)dy =0 has no distinction between independent

and dependent variable

M(x,y)ﬁ+N(x,y) =0
differential form is equivalent to dy
a pair of differential equations
dy 0

M(x,y)+N(x,y)E:

Separable ODE M (x)dx+N(y)dy=0
General Solution _[M (x)dx+ jN (y)dy=c
Solution of IVP  y(x,) =y, IM(x)dx+IN(y)dy:0
Xo Yo
Equation is homogeneous M (Ax,Ay)=2"M (x,y)
of order m if N (ﬂ.x, A y) =A"N (x, y) are homogeneous functions of order m
Homogeneous equation can be reduced to separable Back substitution:
by a change of variable y to y=ux dy = udx + xdu u=2
X
or by a change of variable x to X =vu dx =vdy + ydv y=2
y
By change to polar coordinates x=rcos@ y=rsind
Example ~ Problem 2.2 #1, p.47: Solve y'=x’/y subject to initial condition ~ y(3)=2

Example Problem 2.2 #31
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Example

Solution:

Solve the differential equation y” +2x° +xyy' =0

(yz +2x° )dx +xydy =0 differential form

M and N are homogeneous functions of degree 2.

Change of variable: y=ux dy = xdu + udx
(uzxz +2x2)dx+xux(xdu+udx)=0
(uzx2 +2x° +u2x2)dx+ux3du =0
2x2<u2 +I)dx+ux3du =0

i,

x ul+l

jde 14D
x 2 wu+l

Inx* +ln(u2 +1)=lnc

x4(u2 +1)=c

(y2 +x2)x2 =c

separable

separate variables, x # 0

integrate

solution

back substitution u = 2
X

general solution(implicit)

Check for suppressed solutions: earlier we assumed that x # 0, then check that

x=0

but this solution is a particular case of general solution when ¢ =0 .

Use Maple to plot the solution curves:

is also a solution

>f:={seq(x"2* (y*2+x~2)=i/8,i=0..12) }:
>implicitplot(f,x=-2..2,y=-5..5)
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2.6 Exact Equations and Integrating Factors

Differential of f (x,y) is

Exact equation

Test on exact equation

General solution

Finding 1 (x,y)

Integrating factor p

o (vy) , (%)
d , = d d
f(x y) ox o oy 4
M (x,y)dx+N(x,y)dy=0 is exact if there exists
some f'(x,y) such that
df(x,y) :M(x,y)dx+N(x,y)dy
o _ov
Oy ox
f(xy)=c level curves of the surface defined by f(x, )

D Lom(xy) = fxy)=]M(xy)des k(y)

Ox
2) %:N(x,y) = %J‘M(x,y)dx+ diyk(y) = N(x,y)

= find k(y)

3) General Solution:  f(x,y)= IM(x,y)dx+ k(y) = ¢

Equation multiplied by an integration factor u becomes exact.

oM _av
i) if % ~ () then ()=
oN_an
Wit TP gy ten  u(y)= O
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Example (p.95)

Solve

Rewrite in differential form

Test for exact:

Find f(x,y)

Therefore,

General solution:

1)

2)

2x+ 3y +2xv" =0

M N
—— ——

(2x+y2)dx+ 2xy dy=0

oM 8(2x+y2)

=2y

oy oy

o(2
6_N= ( xy)=2y = Exact
Ox ox
I _y
Ox
o 2
—=2x+
Ox 4
f=x"+y"x+k(y)
I _y
oy
g=£[x2+y2x+k(y):|=2yx+ﬁ
oy oy dy
2yx+%=2xy

dy
& _
dy
k=c
f=x"+yx+c
¥ +y’x+c=g, combine constants, then

(x+y2)x:c
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2.5  Autonomous Equations y'=7(») independent variable t
is not in equation explicitly

Critical points { Vit y'( yk) = 0} critical points y = y, are constant solutions

They are called the equilibrium solutions.

chain

rule
Second derivative y”=2y’=%f[y(t):| = ﬁd_y:ﬁy’zi.f

ot dy dt dy dy

Hyperecritical points { R ( yk) = 0} inflection can occur only at hypercritical points

second derivative test first derivative test

concave

up

concave |

down

concave

up

concave

down

Logistic Equation y'= r(l —éy] y y (0) = @)

critical points:

First derivative y'=1(») y’=r(1—éy]y y=0 and y=K
Second derivative y'=f A g r(] _2 yJ
dy dy K hypercritical points:

1 K
L (1—— )[1—— J =0,y=K and y=—
y y Ky y y y y 2
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Stability of Autonomous Equation stability of equilibrium solutions  y=y,, { oo f ( yk) = 0}

semistable

unstable

asymptotically
stable

unstable

Example:2.5 #22 —=ay(l-y) y(0)=y, a>0
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2.3 Mathematical modeling

m Tank problem (1.1-#21) —— mass balance
Oy Qout
7, -
\ Q(t + Al) -0 (l‘) = QI,"AI - Q{)mAt mass balance for process during time interval At
u
Volume V (1)
do _ A . Q(t) [g] mass
dt Qin Qout . 2
0o ‘:E} =r-c mass flow rate
O _
" c g} concentration
| gal
ol
out V(t)
do )
. = Cin in cautrout gal
dt r H:| volume flow rate
14 [gal] volume
P R— Q0 ..,
and V = const dt 4 "
m Exponential decay iZ—Q =—rQ r>0
t
(1.2-12,13)
. Y
m Exponential growth I =rQ r>0
. dp
m Population model o rp—k r,k >0
t
(1.1,p.5)
. du
m Newton’s Law of Cooling o —k-(u—T) k>0
t
(1.1-23, 1.2-15)
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. d
m Exponential decay L/ —rp
dt
r [i} = decay rate, r >
sec
. dp
m Exponential growth I =rp
t
1
r [—} = growth rate, r > 0
sec
m Tank problem
O(1)[tbm] amount of salt @ = —LQ +c,r
dt 14
m Population model (mice-owl)
p(t)[mice] population d7p =mp- k
dt
1 growth rate
r =
year reproduction rate
mice B continuous rate
year B of killing mice
p(()) =p, [mice] initial population
m Bank model
S() [8] = investment or debt
1 _ annual interest rate
" year B rate of return
; ds k L 12my,
r $ _ cantmu(‘)us annual b = I2-m Dok S(t) _ Soen +7(eu _]) S(t) - S()e T4 (e t _1)
year rate of deposits dt r r
inuous / ds w W o . 12m,
w| 3| o commousanmual Ly =rS—w S(t)=S,e" ——=(e" - 1) S(t)=S,e" ———(e" - 1)
year rate of withdrawls dt 7 r
$ continuous annual das . D n s . 12m,
= - 12. Y =St L = t)=8Se" ——(e" -1
’ {year} rate of payments r 12-m dt rS—p S(t) S"e r (e ]) ( ) 0 r ( )
$ monthly deposits,
" th - withdrawls or payments 12m 12m
mon S(t)= So_i Pl
r r
S(0)=S5, [8] initial deposit or a loan
m Newton’s Law
du
u(t)[”F} temperature E =—k- (u - T)
; [L} 1
sec| 7
-V
T [sec ]: pL—”>0 time constant
hA
m Falling ball Fy=—yv
m
. v _ 7
t . =
(1) [%} velocity dt m vts
F, =mg

V(O) =v, [g} initial velocity
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Integrals Expected Known

1. Isecx dx

jcscx dx
jtanx dx
jcotx dx

Ilnx dx

je‘”‘ sin bx dx

Ie‘“ cosbx dx

10. jsinz mx dx

11. Icosz mx dx

ln|secx+tanx| + ¢

1n|cscx—cotx| + c

—ln|cosx| + c
1n|sinx| + c
xlnx—-x + ¢

1 b
—arctan— + ¢
a a

. X
arcsin— + ¢
a

e (asinbx — bcosbrx)

a’+b*

e (asinbx + bcosbx)

+ C

a’ +b*

mx — Sinmxcosmx

2m

mx + Sinmxcosmx

2m

+ c




Math-303

Chapters 1-2

1%t Order ODE

September 20, 2019

2.3 Falling ball

v

For convenience, assume that the positive direction is UPWARD (in contrast to textbook, see p.2)

ﬂ\
v>0 v<0
N up down
0 F o=—pv direction of friction force is opposite
! X to direction of the velocity
tl
v=0 > ¢
m
v(1) =—gt+v,
A
gravitational force is
F,=-mg ) N
directed downward (negative sign)
N
F=F,+F, resulting force F=m ? Newton's Law
’ t
h h =0
P s, WHETLY m? =—mg—yv governing equation for velocity v(t)
t
) integrate f
/’l([) = hight @:V([) Sfrom 0tot h(t):h,,+_‘.v(t)dt
dt = 0
hﬂ
A
t,=0 t t, > !
50
40
n conservation of energy elevation
2 m v2 v2
— 0 _ 0
1 mg(hmax - h( ) - (hmax - h() ) - 2g
L 12,3 4
dv
2.3 #16 m—= -V —mg v(()):v{) R 14 =0 no friction force
dt
dv
—_ _g
dt
v=-—-glt+g v(,——g/+c, = ¢ =Y
v(t) =—gt+v,

At h=h,,, v(t,)=0

Ezv(t)z—gt+vn

= O0=-gt,+v, =

2

= h(t)z—%+vot+c2

h(0)=h0=—§2tZ+%+c2 = c,=h

gt’
—7"1‘ Vot + hO

h(t)=

h(tz):0:—g71+v0t1 +h,
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v
2.3 #17 \
ﬂ friction force is opposite to velocity,
automatically changes direction
v>0 v<0
v, up down
dv
m—=—yv—m v(0)=v,
— =Trvomg (0)=v,
tl
v=0 > ¢
av y
vt —t—VyV=-—
(®) i m g
terminal p
velocity v= cleizt g v, =¢, LN ¢, =v, + 18
v, =-28 terminal velocity 4 4 4
/4
N
_r
()= 2B Jo -8
Y Ve
B B Whenv =20
h(t) = hight
h(]
t,=0 f I > ¢
7
— 1
At h=h,, , v(t,)=0 = O—V(t,):(v0+g)e CRRLL - SN t,=——1In =5.24s
Y Y rol ™
mg
dh -L
—=v(1)= (v(, + gje n I8
dt ¥ 14
_r
h(t)= —ﬂ[va + nge " ——gt+c2
v Y Y
h(0)=h, = ﬂ[ %j & =+ '"[ ﬂ]
e Y Ve e
_r _r
h(t)zﬂ(w@j(]_e : ] "8, h —h(z,):ﬂ(vﬁ%][l—e j ™, .,
Y v Y e Y
use calculator solver
h(t2)=0={l—ﬂ[vo +—gﬂ ' —g12 +h, solve for t,=512s
Y Y Y
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m -
Yy
m -
I
2 1 6 8 1
[}
A v(t) with air resistance
-4
v, = -8 1682 terminal velocity
K
-bl-
v(t) w/o air resistance
a0 h(t) w/o air resistance
¥
m -
I
2 4 6 8 10
L]

- M
40 h (t) with air resistance
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dv 2 . .
2.3#18 Part I (V > 0) mE =—yv.  —mg 0<t<t, V(O) =v, >0  friction force is downward
h(r) = hy + [ (o
dv 5 L
Part 11 (v < 0) mZ =+yv. —mg 12t v(tl) =0 friction force is upward

h(t) = +Ij:v(t)dt



