2.9 Reduction of Order (p.134)

Reduction of the 2nd order ODE y'' = f(y', y, t) to the 1st order ODE:

Given equation:

$$y'' = f(y',t)$$

Change of variable:

$$y'=v(t)$$

$$y' = v$$

$$y'' = v'(t)$$

$$y'' = v'$$

Reduce to 1st order:

$$v' = f(v, t)$$

v(t)

(solution includes c_1)

Solve for

$$y = \int v(t)dt + c_2$$

Given equation:

$$y'' = f(y', y)$$

Change of variable:

$$\frac{dy}{dt} = v(y)$$

$$y' = v$$

$$y'' = \frac{d}{dt}v(y) = \frac{dv}{dy}\frac{dy}{dt} = v\frac{dv}{dy} = vv'$$

$$y'' = vv'$$

Reduce to 1st order:

vv' = f(v, y)

(y is now treated as an independet variable)

Solve for

v(y)

(solution includes C_1)

Then

$$\frac{dy}{dt} = v(y)$$

Separate variables:

$$\frac{dy}{v(y)} = dt$$

Integrate:

$$\int \frac{dy}{v(y)} = t + c_2$$

Examples:

$$v'' + t(v')^2 = 0$$

$$y'' + t(y')^2 = 0$$
 (2.9: 38) $y'' + y(y')^3 = 0$ (2.9: 44)

Reduction formula for the 2nd order *linear* ODE (p.171), when one solution is known:

Let $y_1(t)$ be a solution of y'' + p(t)y' + q(t)y = 0, then the second solution can be found by

$$y_2 = y_1 \int \frac{e^{-\int p(t)dt}}{y_1^2} dt$$

(4.3)

Ch3 **Higher Order Linear Differential Equations**

Linear ODE's:

$$Ly = y^{(n)} + p_1(t)y^{(n-1)} + ... + p_n(t)y = g(t)$$
 standard form (4.2)

Initial Conditions:

$$y(0) = y_0$$

$$y'(0) = y_1$$

$$\vdots$$

$$y^{(n-l)}(0) = y_{n-l}$$

Ly = 0

Homogeneous equation

Ly = g

Non-homogeneous equation

Equations with constant coefficients

Homogeneous linear ODE

$$a_0 y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = 0$$

Trial form of solution

$$y = e^{rt}$$

Characteristic equation

$$a_0 r^n + a_1 r^{n-1} + ... + a_n r = 0$$

$$a_0 r^n + a_1 r^{n-1} + \dots + a_n r = 0$$
 $\Rightarrow (r - r_1)(r - r_2) \cdots (r - r_n) = 0, \quad r_k \in \mathbb{C}$

Wronskian

Let
$$Ly_1 = 0, ..., Ly_n = 0$$
, then the Wronskian of $y_1(t), ..., y_n(t)$ is defines as

$$W(y_1,y_2)(t)$$

$$W(y_1, y_2)(t)$$
 = $\begin{vmatrix} y_1 & y_2 \\ y'_1 & y'_2 \end{vmatrix} = y_1 y'_2 - y_2 y'_1$

$$W(y_1,...,y_n)(t)$$

$$W(y_{1},...,y_{n})(t) = \begin{vmatrix} y_{1} & y_{2} & \cdots & y_{n} \\ y'_{1} & y'_{2} & \cdots & y'_{n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1}^{(n-1)} & y_{2}^{(n-1)} & \cdots & y_{n}^{(n-1)} \end{vmatrix}$$

$$n^{th} \text{ order}$$

$$W(y_1, y_2, ..., y_n)(t) = ce^{-\int p_1(t)dt}$$

Abel's Formula

3

3.2 2nd Order Linear Equations

$$Ly = y'' + p(t)y' + q(t)y = g(t)$$

$$y(0) = y_0, \ y'(0) = y_1$$
(3)

Theorem 3.2.1 and 4.1.1 (Existence and Uniqueness of the solution of the IVP for linear ODE)

Let
$$t_0 \in (a,b)$$
 and

Let $p_k(t), g(t) \in C(a,b)$ (continuous functions)

Then the linear differential equation

$$y^{(n)} + p_1(t)y^{(n-1)} + ... + p_n(t)y = g(t)$$

has a unique solution $y = \phi(t)$, $t \in (a,b)$

such that
$$y(t_0) = y_0$$
, $y'(t_0) = y_1,...$, $y^{(n-1)}(t_0) = y_{n-1}$

Theorem 3.2.2 (Principle of Superposition for homogeneous equation)

Let
$$Ly_1 = 0$$
 and $Ly_2 = 0$, then $L(c_1y_1 + c_2y_2) = 0$ for any $c_1, c_2 \in \mathbb{R}$.

Theorem 3.2.3 (Solution of initial value problem for homogeneous equation)

Let $Ly_1 = 0$ and $Ly_2 = 0$, then there exist constants $c_1, c_2 \in \mathbb{R}$ such that $y = c_1y_1 + c_2y_2$ satisfies the given initial conditions $y(t_0) = y_0$, $y'(t_0) = y_1$

if and only if
$$W(y_1, y_2)(t_0) = \begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{vmatrix} \neq 0$$
.

Theorem 3.2.4 (General solution of homogeneous equation – a fundamental set of solutions)

Let $Ly_1 = 0$ and $Ly_2 = 0$, then $y = c_1 y_1 + c_2 y_2$, $c_1, c_2 \in \mathbb{R}$

is a general solution (all solutions) of Ly = 0,

if and only if $W(y_1, y_2)(t_0) = \begin{vmatrix} y_1(t_0) & y_2(t_0) \\ y'_1(t_0) & y'_2(t_0) \end{vmatrix} \neq 0$ at some point t_0 .

The set $\{y_1, y_2\}$ is called a *fundamental set*, if $W(y_1, y_2) \neq 0$.

Theorem 3.2.5 (Existence of a fundamental set of solutions)

Let $t_0 \in (a,b)$ and let $p(t),q(t) \in C(a,b)$ (continuous functions).

Let $y_1(t)$ be a solution of the IVP: Ly = 0, $y(t_0) = 1$, $y'(t_0) = 0$.

Let $y_2(t)$ be a solution of the IVP: Ly = 0, $y(t_0) = 0$, $y'(t_0) = 1$.

Then $\{y_1(t), y_2(t)\}\$ is a **fundamental set** of Ly = 0.

Theorem 3.2.6

$$W(y_1, y_2)(t) = ce^{-\int p(t)dt}$$

Abel's Formula

4

FUNDAMENTAL SETS

of the 2nd Order Linear ODEs with Constant Coefficients

Homogeneous equation

$$Ly \equiv a_0 y'' + a_1 y' + a_2 y = 0$$
,

$$a_0, a_1, a_2 = const \in \mathbb{R} \tag{3}$$

Characteristic equation

$$a_0 r^2 + a_1 r + a_2 = 0$$

$$r_{l,2} = \frac{-a_l \pm \sqrt{a_l^2 - 4a_0 a_2}}{2a_0}$$

Roots of characteristic equation	Fundamental Solutions $W[y_1(t), y_2(t)] \neq 0$			
	$y_{I}(t)$	$y_2(t)$	$y_I(t-t_0)$	$y_2(t-t_0)$
I $m_1 \neq m_2 \in \mathbb{R}$ distinct $(r - m_1)(r - m_2) = 0$	$e^{m_i t}$	e^{m_2t}	$e^{m_I(t-t_0)}$	$e^{^{m_2(t-t_0)}}$
case of symmetric roots $(a_1 = 0)$ $r^2 - m^2 = 0$ $r = \pm m$	e^{-mt} $cosh(mt)$	e^{mt} $sinh(mt)$	$e^{-m(t-t_0)}$ $coshigl[m(t-t_0)igr]$	$e^{m(t-t_0)}$ $sinh[m(t-t_0)]$
II $m_1 = m_2 = m \in \mathbb{R}$ repeated $(r-m)^2 = 0$	e^{mt}	te ^{mi}	$e^{m_I(t-t_0)}$	$(t-t_0)e^{m_2(t-t_0)}$
III $a,b \in \mathbb{R}$, $m_{1,2} = a \pm ib$ complex $(r-m_1)(r-m_2) = 0$	e ^{at} cos bt	e ^{at} sinbt	$e^{a(t-t_0)} cos b(t-t_0)$	$e^{a(t-t_0)} sinb(t-t_0)$

Non-homogeneous equation:

$$Ly \equiv y'' + p(t)y' + q(t)y = g(t)$$

Theorem 3.5.2 (General solution of non-homogeneous equation)

Chapters 3-4

Let $\{y_1(t), y_2(t)\}\$ be a **fundamental set** of homogeneous equation Ly = 0, and let Y(t) be a particular solution of non-homogeneous equation Ly = g(t), then

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$$

is the **general solution** of Ly = g(t).

3.5, 4.3 Method of Undetermined Coefficients for LY = g(t). Let $\{y_1, y_2\}$ be a fundamental set of LY = 0.

g(t)	Trial form for Y	If Y repeats y_1 or y_2 , then try $t \cdot Y$
5	A	tA
3 <i>t</i>	At + B	t(At+B)
$2t^2-t$	$At^2 + Bt + C$	$t\left(At^2 + Bt + C\right)$
2 sin 5t	$A \sin 5t + B \cos 5t$	$t(A\sin 5t + B\cos 5t)$
t sin 2t	$(A_{l}t + A_{\theta})\sin 2t + (B_{l}t + B_{\theta})\cos 2t$	$t(A_1t + A_0)\sin 2t + t(B_1t + B_0)\cos 2t$
$3e^{-2t}$	Ae^{-2t}	tAe^{-2t}
e ^{3t} sin 2t	$e^{3t} \left(A \sin 2t + B \cos 2t \right)$	$te^{3t}(A\sin 2t + B\cos 2t)$
te^{2t}	$(At+B)e^{2t}$	$t(At+B)e^{2t}$

If the function g(t) is a combination of the exponential, trigonometric, and polynomial functions in the form:

$$g(t) = e^{at} \left[\left(p_n t^n + p_{n-l} t^{n-l} + ... p_l t + p_0 \right) \cos bt + \left(q_m t^m + q_{m-l} t^{m-l} + ... q_l t + q_0 \right) \sin bt \right]$$
 and

- $a \pm ib$ is not a root of characteristic equation $a_0r^2 + a_1r + a_2 = 0$, then look for particular solution in the form: $Y(t) = e^{at} \Big[\Big(A_k t^k + A_{k-l} t^{k-l} + ... + A_l t + A_0 \Big) \cos bt + \Big(B_k t^k + B_{k-l} t^{k-l} + ... + B_l t + B_0 \Big) \sin bt \Big], \qquad \text{where } k = \max \{n, m\}$ the coefficients in which have to be found by substitution into Ly = g.
- $a \pm ib$ is a root of characteristic equation of multiplicity s, then look for particular solution in the form: $t^s \cdot Y(t)$

3.6 Variation of Parameter Particular solution of y'' + p(t)y' + q(t)y = g(t)

3.7-8 **Spring-mass systems**

Force balance

resulting spring damping gravitational external force force force
$$force$$
 force $force$ weight is balanced by the restoring force, $w=-F_s$
$$F = F_s + F_d + w + F(t)$$
 $force$ $force$

Equation $of\ motion$

$$mu'' + \gamma u' + ku = F(t)$$

$$u(0) = u_0 \qquad \qquad \begin{array}{c} initial \\ deflection \\ u'(0) = v_0 \qquad \qquad \begin{array}{c} initial \\ velocity \end{array}$$

BRITISH	METRIC	CONVERSION
weight (Newton's Law) $w[lb_f] = m[lb_m] \cdot 32 \left[\frac{ft}{s^2}\right]$	$w[N] = m[kg] \cdot 9.8 \left[\frac{m}{s^2}\right]$	I[m] = 100[cm]
damping force $F_d \left[lb_f \right] = -\gamma \cdot u'$	$F_d[N] = -\gamma \cdot u'$	$I[in] = \frac{I}{I2}[ft]$
$ \begin{array}{ll} spring force \\ (Hook's Law) \end{array} F_s \left[lb_f \right] = -k \cdot u $	$F_s[N] = -k \cdot u$	1[in] = 2.54[cm]
$\begin{array}{ccc} & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & & \\ & \\ & & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & & \\ & \\ & \\ & & \\ &$	$k\left[\frac{N}{m}\right] = \left[\frac{kg}{s^2}\right]$	I[ft] = 0.3048[m]
$\begin{array}{ccc} {\it damping} & & \gamma \left[\frac{lb_f \cdot s}{ft} \right] \end{array}$	$\gamma \left[\frac{N \cdot s}{m} \right] = \left[\frac{kg}{s} \right]$	$I[slug] = 32[lb_m]$
velocity $u'\left[\frac{ft}{s}\right]$	$u'\left[\frac{m}{s}\right]$	$I[lb_m] = 0.45[kg]$

Comment: in the textbook (p.195), $\lceil lb \rceil$ is used as a unit of force; $\lceil lb \cdot s^2/ft \rceil$ is used as a unit of mass in engineering textbooks: unit of force is $\lceil lbf \rceil$; unit of mass is $\lceil lbm \rceil$

Nomenclature

u(t) deflection of the weight from equilibrium position of the mass-spring system

$$\omega_0 = \sqrt{\frac{k}{m}}$$
 natural frequency

$$T = \frac{2\pi}{\omega_0}$$
 period of undamped unforced vibrations

$$\mu = \sqrt{\frac{k}{m} - \left(\frac{\gamma}{2m}\right)^2}$$
 quasi-frequency of damped unforced vibrations (for $\gamma < 2\sqrt{km}$)

$$T_d = \frac{2\pi}{\mu}$$
 quasi-period of damped unforced vibrations

$$u(t) = R\cos(\omega_0 t - \delta)$$
 combined modes of vibrations, $\delta = phase \ angle, \ \delta/\omega_0 = time \ lag$

$$\gamma = 2\sqrt{km}$$
 critical damping coefficient

$$F(t) = F_0 \cos \omega t$$
 periodic external force

$$F(t) = F_0 \sin \omega t$$

$$\omega$$
 frequency of the periodic external force F_0 amplitude of the periodic external force

Example 1 (p.194) How to interpret the conditions of the problem:

A mass weighing 4 lb
$$\Rightarrow 4[lb_f] = m[lb_m] \cdot 32 \left[\frac{ft}{s^2}\right] \Rightarrow m = \frac{1}{8}[lb_m]$$

stretches a spring 2 in
$$\Rightarrow \qquad 4 \left[lb_f \right] = k \cdot 2 \left[in \right] \cdot \frac{1}{12} \left[\frac{ft}{in} \right] \qquad \Rightarrow \qquad k = 24 \left[\frac{lb}{ft} \right]$$

The mass is in a medium that exerts a viscous resistance of 6 lb when

the mass has a velocity of 3 ft/s.
$$\Rightarrow \qquad -6 \left[lb_f \right] = -\gamma \cdot 3 \left[\frac{ft}{s} \right] \qquad \qquad \Rightarrow \qquad \gamma = 2 \left[\frac{lb_f \cdot s}{ft} \right]$$

Suppose that the mass is displaced an

additional 6in in the positive direction
$$\Rightarrow u(0) = 6[in] \cdot \frac{1}{12} \left[\frac{ft}{in} \right] \Rightarrow u(0) = \frac{1}{2} [ft]$$

and then released
$$\Rightarrow u'(0) = 0 \left[\frac{ft}{s} \right]$$

Then equation of motion is
$$mu'' + \gamma u' + ku = 0$$

$$\frac{1}{8}u'' + 2u' + 24u = 0$$

Initial Value Problem
$$u'' + 16u' + 192u = 0$$
, $u(0) = \frac{1}{2}$, $u'(0) = 0$

Unforced Vibrations I

F(t) = 0

1) Undamped ($\gamma = 0$)

$$mu'' + ku = 0$$
$$u'' + \frac{k}{m}u = 0$$

$$u'' + \omega_0^2 u = 0$$

$$r^2 + \omega_0^2 = 0$$

$$r_{1,2} = \pm \omega_0 i$$

Natural frequency

$$\omega_0 = \sqrt{\frac{k}{m}}$$

General solution:

$$u(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t)$$

Period

$$T = \frac{2\pi}{\omega_0}$$

Solution of IVP:

$$u(\theta) = u_0$$
, $u'(\theta) = v_0$

$$u_0 = A \cdot 1 + B \cdot 0$$

$$A = u_0$$

$$u'(t) = -\omega_0 A \sin(\omega_0 t) + \omega_0 B \cos(\omega_0 t)$$

$$v_0 = -\omega_0 A \cdot 0 + \omega_0 B \cdot 1$$

$$B = \frac{v_0}{\omega_0}$$

$$u(t) = A\cos(\omega_0 t) + B\sin(\omega_0 t) = u_0\cos(\omega_0 t) + \frac{v_0}{\omega_0}\sin(\omega_0 t)$$

Combining the modes:

$$u(t) = R\cos(\omega_0 t - \delta)$$

$$R^2 = A^2 + B^2 ,$$

$$\delta$$
 = phase angle

$$\tan \delta = \frac{B}{A} = \frac{v_0}{\omega u}$$

 $\cos \delta = \frac{A}{R}$

if
$$A > 0, B > 0$$

$$\delta = tan^{-l} \frac{B}{A}$$

if A < 0

then
$$\delta = tan^{-1}\frac{B}{A} + \pi$$

if A > 0, B < 0

then
$$\delta = tan^{-l}\frac{B}{A} + 2\pi$$

Graphing solution

$$u(t) = R\cos\left[\omega_0\left(t - \frac{\delta}{\omega_0}\right)\right],$$

$$\frac{\delta}{\omega_0}$$
 = time lag, R = amplitude

$$mu'' + \gamma u' + ku = 0$$

$$mr^2 + \gamma r + k = 0$$

$$r_{l,2} = -\frac{\gamma}{2m} \pm \sqrt{\left(\frac{\gamma}{2m}\right)^2 - \frac{k}{m}}$$

a) critical damping

$$\left(\frac{\gamma}{2m}\right)^2 - \frac{k}{m} = 0$$

$$\gamma = 2\sqrt{km}$$

$$r_{l,2} = -\frac{\gamma}{2m}$$

$$u(t) = Ae^{-\left(\frac{\gamma}{2m}\right)t} + Bte^{-\left(\frac{\gamma}{2m}\right)t}$$

$$u'(t) = -\left(\frac{\gamma}{2m}\right)Ae^{-\left(\frac{\gamma}{2m}\right)t} + Be^{-\left(\frac{\gamma}{2m}\right)t} - \left(\frac{\gamma}{2m}\right)Bte^{-\left(\frac{\gamma}{2m}\right)t}$$

$$u(0) = u_0 = A \cdot l + B \cdot 0$$

$$u'(t) = v_0 = -\left(\frac{\gamma}{2m}\right)A \cdot I + B \cdot I - 0$$

$$A = u_0$$

$$B = v_0 + \left(\frac{\gamma}{2m}\right) u_0$$

$$u(t) = \left[u_0 + \left(v_0 + \frac{\gamma}{2m}u_0\right)t\right]e^{-\left(\frac{\gamma}{2m}\right)t}$$

Example:

$$u'' + 4u' + 4u = 0$$

$$u(0) = 1, \ u'(0) = -5$$

Solution:

$$u(t) = (1-3t)e^{-2t}$$

b) overdamping

$$\left(\frac{\gamma}{2m}\right)^2 - \frac{k}{m} > 0$$

$$\gamma > 2\sqrt{km}$$

Roots:

$$r_{1,2} = -\frac{\gamma}{2m} \pm \sqrt{\left(\frac{\gamma}{2m}\right)^2 - \frac{k}{m}} < 0$$

$$r_1 < 0, r_2 < 0$$
 always

Solution:

$$u(t) = Ae^{r_1t} + Be^{r_2t}$$

$$A = \frac{v_0 - r_2 u_0}{r_1 - r_2}$$

$$B = \frac{r_l u_0 - v_0}{r_l - r_2}$$

c) damped vibrations

$$\left(\frac{\gamma}{2m}\right)^2 - \frac{k}{m} < 0$$

 $r_{1,2} = -\frac{\gamma}{2m} \pm i \sqrt{\frac{k}{m} - \left(\frac{\gamma}{2m}\right)^2}$

$$\gamma < 2\sqrt{km}$$

quasi frequency
$$\mu = \sqrt{\frac{k}{m} - \left(\frac{\gamma}{2m}\right)^2}$$

$$T_d = \frac{2\pi}{u}$$

$$u(t) = Ae^{-\left(\frac{\gamma}{2m}\right)t}\cos\mu t + Be^{-\left(\frac{\gamma}{2m}\right)t}\sin\mu t$$

$$u'(t) = \left[Ae^{-\left(\frac{\gamma}{2m}\right)t} \cos \mu t + Be^{-\left(\frac{\gamma}{2m}\right)t} \sin \mu t \right]'$$

$$u(0) = u_0 = A \cdot 1 + B \cdot 0$$

$$A = u_0$$

$$u'(t) = -\left(\frac{\gamma}{2m}\right)Ae^{-\left(\frac{\gamma}{2m}\right)t}\cos\mu t - \mu Ae^{-\left(\frac{\gamma}{2m}\right)t}\sin\mu t - \left(\frac{\gamma}{2m}\right)Be^{-\left(\frac{\gamma}{2m}\right)t}\sin\mu t + \mu Be^{-\left(\frac{\gamma}{2m}\right)t}\cos\mu t$$

$$v_0 = -\left(\frac{\gamma}{2m}\right)A + \mu B$$

$$B = \frac{v_0 + \left(\frac{\gamma}{2m}\right)u_0}{\mu}$$

$$u(t) = e^{-\left(\frac{\gamma}{2m}\right)t} [A\cos\mu t + B\sin\mu t]$$

$$u(t) = Re^{-\left(\frac{\gamma}{2m}\right)t}\cos(\mu t - \delta)$$

$$R^2 = A^2 + B^2$$
, $\tan \delta = \frac{B}{A}$

Exercise:

A mass 1 kg is attached to a spring with spring constant k=8 kg/s².

The mass is in a medium that exerts a viscous resistance 4 N when the mass has a velocity 1 m/s. No external force is applied.

Assume that mass is pulled down by 4 m below its equilibrium and released with initial downward velocity 2 m/s.

Find the equation which describes the motion of the spring.

Answer:
$$u(t) = (4\cos 2t + 5\sin 2t)e^{-2t}$$

Chapters 3-4

II **Forced Vibrations**

$$F(t) \neq 0$$

 $F(t) = a\cos\omega t + b\sin\omega t$

periodic external force

 $mu'' + \gamma u' + ku = F(t)$

General solution:

$$u(t) = u_c(t) + U(t)$$

initial conditions:

$$u(0) = u_0$$
, $u'(0) = v_0$

Damped $(\gamma > 0)$

$$mu'' + \gamma u' + ku = F_0 \cos(\omega t)$$

$$u(0) = u_0$$
, $u'(0) = v_0$

$$r_{l,2} = -\frac{\gamma}{2m} \pm i \sqrt{\frac{k}{m} - \left(\frac{\gamma}{2m}\right)^2}$$

$$\mu = \sqrt{\frac{k}{m} - \left(\frac{\gamma}{2m}\right)^2} = \omega_0 \sqrt{1 - \frac{\gamma^2}{4mk}}, \qquad \omega_0^2 = \frac{k}{m}$$

General solution:

$$u(t) = u_c(t) + U(t)$$

 $\lim u_c(t) = 0$ (transient solution)

lim u(t) = U(t) (steady state solution)

Steady state solution

 $U(t) = A\cos\omega t + B\sin\omega t$

(use undetermined coefficients to find a particular solution)

$$A = \frac{mF_0\left(\omega_0^2 - \omega^2\right)}{m^2\left(\omega_0^2 - \omega^2\right)^2 + \omega^2\gamma^2}$$

$$B = \frac{F_0 \omega \gamma}{m^2 \left(\omega_0^2 - \omega^2\right)^2 + \omega^2 \gamma^2} \qquad B > 0 \text{ always}$$

$$U(t) = A\cos\omega t + B\sin\omega t = R\cos\left[\omega\left(t - \frac{\delta}{\omega}\right)\right]$$

$$\tan \delta = \frac{B}{A} = \frac{1}{\left(\omega_0^2 - \omega^2\right)} \frac{\omega \gamma}{m}$$

if
$$A > 0$$
 then $\delta = \tan^{-1} \frac{B}{A}$

if
$$A < 0$$
 then $\delta = \pi + \tan^{-1} \frac{B}{A}$

$$R = \sqrt{A^{2} + B^{2}} = \frac{F_{0}}{\sqrt{m^{2}(\omega_{0}^{2} - \omega^{2})^{2} + \omega^{2}\gamma^{2}}}$$

"Resonance"

Max amplitude of the steady state vibrations when the frequency of external force is

$$\omega_{max} = \underbrace{\omega_0 \sqrt{1 - \frac{\gamma^2}{2mk}}}_{\mu}$$

2) **Damped**
$$(\gamma > 0)$$

$$mu'' + \gamma u' + ku = F_0 \sin(\omega t)$$

$$u(\theta) = u_0, \quad u'(\theta) = v_0$$

3.8 ## 6,8

13

Steady state solution

$$U(t) = A\cos\omega t + B\sin\omega t$$

(use undetermined coefficients to find a particular solution)

$$A = \frac{-\omega \gamma F_0}{m^2 \left(\omega_0^2 - \omega^2\right)^2 + \omega^2 \gamma^2} \qquad \omega_0^2 = \frac{k}{m} \qquad A < 0$$

$$\omega_0^2 = \frac{k}{m} \qquad A <$$

$$B = \frac{mF_0\left(\omega_0^2 - \omega^2\right)}{m^2\left(\omega_0^2 - \omega^2\right)^2 + \omega^2\gamma^2}$$

$$U(t) = A\cos\omega t + B\sin\omega t = R\cos\left[\omega\left(t - \frac{\delta}{\omega}\right)\right]$$

$$\tan \delta = \frac{B}{A} = \frac{-m(\omega_0^2 - \omega^2)}{\omega \gamma}$$

since A < 0, $\delta = \pi + \tan^{-1} \frac{B}{A}$

$$R = \sqrt{A^2 + B^2} = \frac{F_0}{\sqrt{m^2 (\omega_0^2 - \omega^2)^2 + \omega^2 \gamma^2}}$$

General solution:

$$u(t) = u_c(t) + U(t)$$

$$u(t) = c_1 e^{-\left(\frac{\gamma}{2m}\right)t} \cos \mu t + c_2 e^{-\left(\frac{\gamma}{2m}\right)t} \sin \mu t + R \cos \left[\omega \left(t - \frac{\delta}{\omega}\right)\right]$$

Solution of IVP:

$$u_0 = c_1 \cdot I + 0 + R\cos\delta = c_1 \cdot I + 0 + R\frac{A}{R}u_0 = c_1 + A \qquad \Rightarrow c_1 = u_0 - A$$

$$u'(t) = -c_1 \frac{\gamma}{2m} e^{-\left(\frac{\gamma}{2m}\right)t} \cos \omega_0 t - c_1 \omega_0 e^{-\left(\frac{\gamma}{2m}\right)t} \sin \omega_0 t - c_2 \frac{\gamma}{2m} e^{-\left(\frac{\gamma}{2m}\right)t} \sin \omega_0 t + c_2 \omega_0 e^{-\left(\frac{\gamma}{2m}\right)t} \cos \omega_0 t - R\omega \sin \left[\omega \left(t - \frac{\delta}{\omega}\right)\right]$$

$$v_0 = -c_1 \frac{\gamma}{2m} - 0 - 0 + c_2 \omega_0 - R\omega \sin(-\delta)$$

$$v_0 = -u_0 + A \frac{\gamma}{2m} + c_2 \omega_0 + R \omega \frac{B}{R}$$
 $\Rightarrow c_2 = \frac{v_0 + u_0 - A \frac{\gamma}{2m} - \omega B}{\omega_0}$

$$u(t) = \left(u_0 - A\right)e^{-\left(\frac{\gamma}{2m}\right)t}\cos\mu t + \left(\frac{v_0 + u_0 - A\frac{\gamma}{2m} - \omega B}{\omega_0}\right)e^{-\left(\frac{\gamma}{2m}\right)t}\sin\mu t + R\cos\left[\omega\left(t - \frac{\delta}{\omega}\right)\right]$$

1) Undamped (
$$\gamma = \theta$$
)

$$u'' + \omega_0^2 u = \frac{F_0}{m} \cos(\omega t)$$

$$\omega_0^2 = \frac{k}{m}$$

 $\omega_0^2 = \frac{k}{m}$ natural frequency

General solution:

$$u(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + U(t)$$

a)
$$\omega \neq \omega_0$$

 $U(t) = A\cos\omega t + B\sin\omega t$ (use undetermined coefficients to find a particular solution)

$$A = \frac{F_0}{m(\omega_0^2 - \omega^2)}, \qquad B = 0,$$

$$B=0$$
,

$$\frac{B}{A} = 0 \implies \delta = 0$$

$$U(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t$$

Solution of IVP:

$$u(t) = \left(u_0 - \frac{F_0}{m(\omega_0^2 - \omega^2)}\right) \cos \omega_0 t + \frac{v_0}{\omega_0} \sin \omega_0 t + \frac{F_0}{m(\omega_0^2 - \omega^2)} \cos \omega t$$

Example:

 $u(\theta) = u_{\theta} = \theta$, $u'(\theta) = v_{\theta} = \theta$ (vibrations are driven only by external force)

$$u(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} (\cos \omega t - \cos \omega_0 t) = \frac{2F_0}{m(\omega_0^2 - \omega^2)} \cdot \sin\left(\frac{\omega_0 - \omega}{2}t\right) \cdot \sin\left(\frac{\omega_0 + \omega}{2}t\right)$$

$$u(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} (\cos \omega t - \cos \omega_0 t) = \frac{2F_0}{m(\omega_0^2 - \omega^2)} \cdot \sin\left(\frac{\omega_0 - \omega}{2}t\right) \cdot \sin\left(\frac{\omega_0 + \omega}{2}t\right)$$

If
$$|\omega - \omega_0| << |\omega + \omega_0|$$
 (**beat**) $u(t) = \frac{F_0}{m(\omega_0^2 - \omega^2)} \cdot \sin\left(\frac{\omega_0 - \omega}{2}t\right) \cdot \sin\left(\frac{\omega_0 + \omega}{2}t\right)$

b)
$$\omega = \omega_0$$
 (**Resonance**)

$$u'' + \omega_0^2 u = \frac{F_0}{m} \cos(\omega_0 t)$$

$$\omega_0^2 = \frac{k}{m}$$

$$u(\theta) = u_0$$
, $u'(\theta) = v_0$

General solution:

$$u(t) = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + U(t)$$

 $U(t) = At \cos \omega_0 t + Bt \sin \omega_0 t$ (use undetermined coefficients to find a particular solution)

$$A = 0$$

$$B = \frac{F_0}{2m\omega_0}$$

$$U(t) = \frac{F_0 t}{2m\omega_0} \sin \omega_0 t$$

Solution of IVP:

$$u(t) = u_0 \cos \omega_0 t - \frac{v_0}{\omega_0} \sin \omega_0 t + \frac{F_0 t}{2m\omega_0} \sin \omega_0 t$$

Example

$$u(\theta) = u_0 = \theta$$
, $u'(\theta) = v_0 = \theta$ (vibrations are driven only by external force)

$$u(t) = \frac{F_0 t}{2m\omega_0} \sin \omega_0 t$$

$$u'' + u = \frac{1}{2}cos(t)$$

4.1 nnt Order Linear Ordinary Differential Equations

$$Ly = y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_{n-1}(t)y' + p_n(t)y = g(t)$$
 (2)

$$y(\theta) = y_0, \ y'(\theta) = y_1, ..., \ y^{(n-1)}(t_0) = y_{n-1}$$
 (3)

Theorem 3.2.1 and 4.1.1 (Existence and Uniqueness of the solution of the IVP for linear ODE)

Let $t_0 \in (a,b)$ and

let $p_k(t), g(t) \in C(a,b)$ (continuous).

Then the linear differential equation

$$y^{(n)} + p_1(t)y^{(n-1)} + ... + p_n(t)y = g(t)$$

has a unique solution $y = \phi(t)$, $t \in (a,b)$

such that
$$y(t_0) = y_0$$
, $y'(t_0) = y_1,..., y^{(n-l)}(t_0) = y_{n-l}$

Homogeneous Equation

$$Ly = y^{(n)} + p_1(t)y^{(n-1)} + \dots + p_{n-1}(t)y' + p_n(t)y = 0$$
(4)

Superposition Principle If the functions $y_1, y_2, ..., y_n$ are solutions of Ly = 0, then the linear combination

$$y(t) = c_1 y_1 + c_2 y_2 + \dots + c_n y_n , \quad c_k \in \mathbb{R}$$
 (5)

is also a solution of Ly = 0.

Wronskian

$$W(y_{1},...,y_{n})(t) = \begin{vmatrix} y_{1} & y_{2} & \cdots & y_{n} \\ y'_{1} & y'_{2} & \cdots & y'_{n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1}^{(n-l)} & y_{2}^{(n-l)} & \cdots & y_{n}^{(n-l)} \end{vmatrix} = ce^{-\int p_{1}(t)dt}$$
(7)

Theorem 4.1.2

(General solution of homogeneous equation – a fundamental set of solutions)

Let $p_k(t), g(t) \in C(a,b)$ (continuous functions).

Let $y_1(t), y_2(t), ..., y_n(t)$ be solutions of homogeneous equation Ly = 0.

Then any solution of Ly = 0 can be expressed as a linear combination

$$y(t) = c_1 y_1 + c_2 y_2 + ... + c_n y_n, \quad c_k \in \mathbb{R}$$

if and only if $W(y_1,...,y_n)(t) \neq 0$ at least at one point in (a,b).

Fundamental set

The set $\{y_1(t), y_2(t), ..., y_n(t)\}$ is called a *fundamental set* of Ly = 0, and $y(t) = c_1 y_1 + c_2 y_2 + ... + c_n y_n$, $c_k \in \mathbb{R}$ is called a **general solution** of Ly = 0.

October 16, 2017

Theorem 4.1.2

(Existence of a fundamental set of solutions)

Chapters 3-4

Let $t_0 \in (a,b)$ and let $p_k(t), g(t) \in C(a,b)$ (continuous).

Let $y_1(t)$ be a solution of the IVP: Ly = 0, $y(t_0) = 1$, $y'(t_0) = 0$,..., $y^{(n-1)}(t_0) = 0$

Let $y_2(t)$ be a solution of the IVP: Ly = 0, $y(t_0) = 0$, $y'(t_0) = 1$,..., $y^{(n-1)}(t_0) = 0$

Let $y_n(t)$ be a solution of the IVP: Ly = 0, $y(t_0) = 0$, $y'(t_0) = 0$,..., $y^{(n-1)}(t_0) = 1$

Then $\{y_1(t), y_2(t), ..., y_n(t)\}$ is a **fundamental set** of Ly = 0.

Linear Dependence

The functions $y_1(t), y_2(t), ..., y_n(t)$ are said to be **linearly dependent** on (a,b), if there exist a set of coefficients $c_1, c_2, ..., c_n \in \mathbb{R}$ not all zero, such that $c_1 y_1(t) + c_2 y_2(t) + ... + c_n y_n(t) = 0$ for all $t \in (a,b)$.

Linear Independence

The functions $y_1(t), y_2(t), ..., y_n(t)$ are said to be **linearly independent** on (a,b), if they are not linearly dependent there.

The functions $y_1(t), y_2(t), ..., y_n(t)$ are said to be **linearly independent** on (a,b), if $c_1 y_1(t) + c_2 y_2(t) + ... + c_n y_n(t) = 0$ for all $t \in (a,b)$ only if all coefficients $c_1 = c_2 = ... = c_n = 0$.

Theorem 4.1.3

(Fundamental set of solutions)

The set $\{y_1(t), y_2(t), ..., y_n(t)\}\$ is a fundamental set of solutions of Ly = 0 on (a,b), if and only if $\{y_1(t), y_2(t), ..., y_n(t)\}$ is a *linearly independent set* of solutions on (a,b)

if $W(y_1, y_2, ..., y_n)(t_0) \neq 0$ at some t_0 , then $y_1(t), y_2(t), ..., y_n(t)$ are linearly independent if $W(y_1, y_2, ..., y_n)(t_0) = 0$ at some t_0 , then $y_1(t), y_2(t), ..., y_n(t)$ are linearly dependent

 $f_1,...,f_n$ not solutions of Ly=0

and $W(f_1, f_2, ..., f_n)(t) = 0$ at some t_0 , however $f_1(t), f_2(t), ..., f_n(t)$ can be linearly independent

NON-HOMOGENEOUS EQUATION

$$Ly = y^{(n)} + p_1(t)y^{(n-l)} + \dots + p_{n-l}(t)y' + p_n(t)y = g(t)$$
 (2)

General Solution

Any solution (general solution) of non-homogeneous equation (2) can be written as a combination of the general solution of the corresponding homogeneous equation and some particular solution of non-homogeneous equation:

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t) + Y(t)$$
(16)

4.2 Fundamental sets of a Linear ODE with constant coefficients

Homogeneous Linear ODE:

$$Ly = a_0 y^{(n)} + a_1 y^{(n-1)} + ... + a_n y = 0$$

A polynoimial of degree n has n roots:

Characteristic equation:

$$a_0 r^n + a_1 r^{n-1} + \dots + a_n r = 0$$

$$(r-r_1)(r-r_2)\cdots(r-r_n)=0$$

Fundamental Solutions I $m_i \neq m_j \in \mathbb{R}$ $(r-m_t)(r-m_2)\cdots(r-m_n)=0$ $e^{m_t t}, e^{m_2 t}, ..., e^{m_n t}$ II repeated root of multiplicity s $m_1 = ... = m_s = m \in \mathbb{R}$ $(r-m)^s = 0$ $e^{mt}, te^{mt}, ..., t^{s-1}e^{mt}$ III $z = a \pm ib$, $a,b \in \mathbb{R}$ (r-z) = 0 $e^{at} \cos bt, e^{at} \sin bt$ $te^{at} \cos bt, te^{at} \sin bt$ \vdots $t^{s-1}e^{at} \cos bt, t^{s-1}e^{at} \sin bt$

Complex Numbers

$$z = a + ib$$

$$z = re^{i\theta}$$

$$z = r [\cos \theta + i \sin \theta]$$

$$z = r [\cos(\theta + k \cdot 2\pi) + i\sin(\theta + k \cdot 2\pi)] = re^{i(\theta + 2\pi k)}$$

$$a = r\cos\theta$$
$$b = r\sin\theta$$

$$\frac{b}{a} = \tan \theta$$

$$r^2 = a^2 + b^2$$

Roots of Complex Numbers

$$z_{k+1} = z^{\frac{1}{n}}$$

$$k = 0, 1, ..., n - 1$$

$$z_{k+1} = r^{\frac{1}{n}} e^{\frac{\theta + k \cdot 2\pi}{n}}$$

$$z_{k+1} = r^{l/n} \left[cos \left(\frac{\theta + k \cdot 2\pi}{n} \right) + i sin \left(\frac{\theta + k \cdot 2\pi}{n} \right) \right]$$

Non-Homogeneous Linear ODE

$$Ly = y^{(n)} + p_1(t)y^{(n-1)} + ... + p_n(t)y = g(t)$$

General Solution

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + \dots + c_n y_n(t) + Y(t)$$
(16)

Fundamental Set

$$\{v_1, v_2, ..., v_n\}$$

$$Ly_k(t) = 0$$

$$\{y_1, y_2, ..., y_n\}$$
 $Ly_k(t) = 0$ $W(y_1, ..., y_n)(t) \neq 0$

Particular solution of non-homogeneous eqn

$$LY(t) = g(t)$$

4.3 Undetermined Coefficients for LY = g(t), where $g(t) = e^{at} [p_n(t)cosbt + q_m(t)sinbt]$, then the trial form is

$$Y(t) = e^{at} \left[P_k(t) \cos bt + Q_k(t) \sin bt \right]$$

$$Y(t) = e^{at} \Big[P_k(t) cos bt + Q_k(t) sin bt \Big]$$
 if $a \pm ib$ **is not** a root
$$Y(t) = t^s e^{at} \Big[P_k(t) cos bt + Q_k(t) sin bt \Big]$$
 if $a \pm ib$ **is** a root

of multiplicity s

4.4 Variation of Parameters:

$$Y(t) = u_1 y_1 + u_2 y_2 + ... + u_n y_n$$

$$W(y_1,...,y_n)(t) = \begin{vmatrix} y_1 & \cdots & y_k & \cdots & y_n \\ y'_1 & \cdots & y'_k & \cdots & y'_n \\ \vdots & \vdots & \ddots & \vdots \\ y_1^{(n-1)} & \cdots & y_k^{(n-1)} & \cdots & y_n^{(n-1)} \end{vmatrix}$$

$$W_{k}(y_{1},...,y_{n})(t) = \begin{vmatrix} y_{1} & \cdots & 0 & \cdots & y_{n} \\ y'_{1} & \cdots & 0 & \cdots & y'_{n} \\ \vdots & \vdots & \ddots & \vdots \\ y_{1}^{(n-1)} & \cdots & g(t) & \cdots & y_{n}^{(n-1)} \end{vmatrix}$$

$$k^{th} \ column$$

$$u'_k = \frac{W_k}{W}$$

$$u_k = \int \frac{W_k}{W} dt$$

Exercises: 2.9: 37, 44, 48

Exercises 3.4: 28

- 1) Find the general solution of the given differential equation $y'' 4y' + 4y = \frac{e^{2t}}{t}$
- 2) Find the solution of the given initial value problem $y'' y = e^t$ y(0)=1, y'(0)=0
- 3) (a) u''' 5u'' + 3u' + u = 0
 - (b) u''' + 5u'' + 6u' + 2u = 0

$$u(0) = 0$$
, $u'(0) = 1$, $u''(0) = -1$

- 4) $y^{(iv)} + 16y = 0$
- 5) u'' + 4u' + 4u = 0

- u(0) = 1, u'(0) = -5 Sketch the graph
- 6) $u'' + 2u' + 2u = 4\cos(t) + 2\sin(t)$
- $u(0) = 0, \ u'(0) = 0$

7) $u'' + u = 1/2\cos(t)$

- u(0) = 0, u'(0) = 0
- 8) A mass 1 kg is attached to a spring with spring constant k=8 kg/s². The mass is in a medium that exerts a viscous resistance 4 N when the mass has a velocity 1 m/s. No external force is applied. Assume that mass is pulled down by 4 m below its equilibrium and released with initial downward velocity 2 m/s. Find the equation which describes the motion of the spring. Sketch the graph.
- 9) $y^{(vi)} y''' = t$

Exercises

2.9 Reduction of order:

Reduce
$$y'' + t(y')^2 = 0$$

No
$$t$$

Reduce
$$yy'' + (y')^2 = 0$$

Linear 2^{nd} order ODE, one solution y_1 is known, find the second solution:

$$ty'' - 4ty' + 6y = 0$$

$$y_I = t^2$$

21

N th Linear ODE		
Normal form		
Wronskian		
Abel's Formula		
Fundamental set		
Fundamental set of the Linear ODE with co	nstant coefficients:	
General solution of homogeneous equation		
General solution of non-homogeneous equa	tion	
Method of Undetermined coefficients For what g(t) it can be used?	g(t)=	
Trial Form:	Y =	
Method of variation of parameter:	<i>Y</i> =	

Given W(1)=2 of the ODE ty''+2y'+ty=0. What is W(5)=?

Find the general solution of y''' + y' = csct

The roots of the complex number

$$(z)^{\frac{I}{n}}$$

Find the roots of (sketch):

$$r^5 - 1 = 0$$

$$r^5 + 1 = 0$$

$$r^8 - 1 = 0$$

$$r^8 + 1 = 0$$

Spring-mass system

Sketch the free-body diagram

Identify and describe the forces

Equilibrium relationship

Governing equation

Initial conditions

Unforced undamped

Damped critical damping

overdamped

Forced vibration damped forced vibrations

Undamped forced vibrations

Resonance

25

Undetermined Coefficients

If the function g(t) is a combination of the exponential, trigonometric, and polynomial functions in the form:

$$g(t) = e^{at} [p_n(t)\cos bt + q_m(t)\sin bt],$$
 where $p_n(t)$ and $q_m(t)$ are polynomials of order n and m , and

1) $a \pm ib$ is **not** a root of characteristic equation, then look for particular solution in the form:

$$Y(t) = e^{at} \Big[\Big(A_k t^k + A_{k-l} t^{k-l} + \dots + A_l t + A_0 \Big) cos bt + \Big(B_k t^k + B_{k-l} t^{k-l} + \dots + B_l t + B_0 \Big) sin bt \Big], \quad \text{where } k = max \{n, m\}$$
the coefficients in which have to be found by substitution into $Ly = g$.

2) $a \pm ib$ is a root of characteristic equation of multiplicity s, then look for particular solution in the form: $t^s \cdot Y(t)$

3.5 #17
$$y'' - 2y' + y = te^t + 4$$
 $y(0) = 1, y'(0) = 1$

$$r^2 - 2r + 1 = 0$$
 characteristic equation $(r-1)^2 = 0$, $r = 1$ is a root of multiplicity s=2

$$y_c(t) = c_1 e^t + c_2 t e^t$$
 solution of homogeneous equation

I)
$$y'' - 2y' + y = te^t$$
 identify: $\alpha = 1, \beta = 0, n = 1, m = 0$ $1 \pm i \cdot 0$ is a root of multiplicity s=2

$$Y = t^{2} (A + Bt)e^{t} = At^{2}e^{t} + Bt^{3}e^{t}$$
 trial form of solution

$$Y' = 2Ate^{t} + At^{2}e^{t} + 3Bt^{2}e^{t} + Bt^{3}e^{t} = 2Ate^{t} + (A+3B)t^{2}e^{t} + Bt^{3}e^{t}$$

$$Y'' = 2Ae^{t} + 2Ate^{t} + 2(A+3B)te^{t} + (A+3B)t^{2}e^{t} + 3Bt^{2}e^{t} + Bt^{3}e^{t} = 2Ae^{t} + (4A+6B)te^{t} + (A+6B)t^{2}e^{t} + Bt^{3}e^{t}$$

$$2Ae^{t} + \left(4A + 6B\right)te^{t} + \left(A + 6B\right)t^{2}e^{t} + Bt^{3}e^{t} - 2\left[2Ate^{t} + \left(A + 3B\right)t^{2}e^{t} + Bt^{3}e^{t}\right] + At^{2}e^{t} + Bt^{3}e^{t} = te^{t}$$

$$2Ae' + (4A + 6B)te' + (A + 6B)t^2e' + Bt^3e' - 4Ate' + (-2A - 6B)t^2e' - 2Bt^3e' + 4t^2e' + Bt^3e' = te'$$

$$2Ae^{t} + (4A+6B-4A)te^{t} + (A+6B-2A-6B+A)t^{2}e^{t} + (B-2B+B)t^{3}e^{t} = te^{t}$$

$$2Ae^t + 6Bte^t = te^t \qquad \Rightarrow \qquad A = 0, \ B = \frac{1}{6}$$

$$Y = \frac{1}{6}t^3e^t$$

II)
$$y'' - 2y' + y = 4$$
 trial form of solution, substitution yields $A = 4$

$$y_c(t) = c_1 e^t + c_2 t e^t + \frac{1}{6} t^3 e^t + 4$$
 General solution

Math303-3 Winter 2017 Quiz #5 Name:

2nd order linear ODE:

$$Ly \equiv y'' + p(t)y' + q(t)y = g(t)$$

Let $\{y_1(t), y_2(t)\}\$ be a **fundamental set**: $Ly_1 = 0$, $Ly_2 = 0$ and $W(y_1, y_2) \neq 0$.

Let Y(t) be a particular solution of Ly = g(t), then

$$y(t) = c_1 y_1(t) + c_2 y_2(t) + Y(t)$$

general solution of Ly = g(t).

2nd order linear **ODE** with constant coefficients Ly = g(t)

Homogeneous equation

$$Ly \equiv a_0 y'' + a_1 y' + a_2 y = 0$$

 $a_0, a_1, a_2 = const \in \mathbb{R}$

Characteristic equation

$$a_0 r^2 + a_1 r + a = 0$$

$$r_{1,2} = \frac{-a_1 \pm \sqrt{a_1^2 - 4a_0 a_2}}{2a_0}$$

Method of Undetermined Coefficients for Ly = g(t)

$$g(t) = e^{at} \left[\left(p_n t^n + \dots + p_l t + p_0 \right) \cos bt + \left(p_m t^m + \dots + p_l t + p_0 \right) \sin bt \right]$$

1) $a \pm ib$ is not a root:

$$Y(t) = e^{at} \left[\left(A_k t^k + \dots + A_l t + A_0 \right) \cos bt + \left(B_k t^k + \dots + B_l t + B_0 \right) \sin bt \right], \qquad k = \max\{n, m\}$$

2) $a \pm ib$ is a root of mult. s

 $t^s \cdot Y(t)$

Variation of Parameter

$$Y = u_1 y_1 + u_2 y_2$$

$$u_{I} = -\int \frac{y_{2}}{W(y_{I}, y_{2})} g(t) dt$$

$$u_2 = \int \frac{y_1}{W(y_1, y_2)} g(t) dt$$

Example 1: $y'' - 2y' + y = te^t$

$$r^2 - 2r + 1 = 0$$

ch. eqn

$$(r-1)^2 = 0$$

r = 1 is a root of multiplicity s=2

$$g(t) = te^t$$

identify:

$$a = 1, b = 0, n = 1, m = 0$$

$$a \pm bi = 1 \pm 0 \cdot i$$

is a root of multiplicity s=2

$$Y = (A + Bt)e^t$$

$$t^2Y = t^2(A + Bt)e^t = At^2e^t + Bt^3e^t$$

Trial form of particular solution

Example 2: $y'' + y = t^2 \sin t$

Example 3: $y^{(iv)} + y''' = t^2 e^{-t}$