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5.1 Power Series

convergence

absolute convergence

radius of convergence

Taylor Series

Analytic Function

Operations

summation

multiplication

differentiation

Shift of index

Identity Theorem

Geometric series

about x =0

Sa,(x-x,)

n=0

about x = x,

N
series converges at x if the sequence of partial sums Y a,(x-x,)" —> S converges.
n=0

if the series of absolute values z
n=0

n
a,(x—x,) ‘ converges.

interval of convergence

R=Ilim

n—om

diverges converges diverges

a

n+l

x,—R X

0 'x/7 + R

> a,(x—x,)" absolutely converges forall x, —R<x<x,+R
n=0

Convergence at boundary points x = x, £ R has to be investigated separately.

y(k) (0)
Z 0/, MacLauren series:  y(x) =Y -t
i k! o k!

Power series defines an analytic function in its interval of convergence:

0

f(x)=2a,(x=x)

n=0

xe(x,—R.x,+R)

Function is called analytic at x, if it has a Taylor series expansion about x = x, .

Letf(x):ian(x—xo)” and g(x)zibn(x—xo)" be convergent in (x, —R,x, +R):

n=0 n=0

m=n+k c .
dummy index”
n=m-—k

then coefficients a, =0

o0

1
> x" = T+x+x7+.. = converges for —/ <x <
n=0 -X
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5.2

Power Series Solution of the 2" order linear ODE (Method of Frobenius)

Consider the linear ODE with variable coefficients

P(x)y"+0(x)y'+R(x)y=0, where P(x), O(x), R(x) are polynomials (1)

If P(x,)#0, then x, iscalledan ordinary point.

If P(x,)=0, then x, iscalleda  singular point. In general, x, =a+ib can be a complex root.

1)

Assume the solution to be in the form of power series, and differentiate it

0

y(x)= ch (x-x,)

n=0

0

y'(x) = chn (x—x(,)"_[

n=1

y(x) = Dn(n=D)e, (x—x,)"

n=2

2) Substitute into ODE
3) Combine in a single sigma summation term (change index of summation and write explicitly extra terms)
4) Derive the recurrence equation for coefficients ¢, , using the Identity Theorem.
5) Collect terms with coefficient ¢, : that yields one solution yvi=c,[ ]

Collect terms with coefficient c, : that yields the second solution yvy=¢,-[ ]
6) General Solution: y(x)=c,p, (x)+¢,p, (x)
7) Solution of IVP ¢, =v(x,), ¢, =v3(x,)
Theorem 5.3.1 If x, is an ordinary point, P(x,)) # 0 , then the general solution of (1) is

y(x):ch (x_xo)n =C), ey, ¢.c R

n=0
where y,,y, are two power series solution of equation (1)
with the radius of convergence R > |x0 -X ,| , where

|x0 —x1| is the distance from the point of expansion x, to the closest singular point x,,

i.e. the root of P(x,)=0, where x, can be a complex root.
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5.3 Taylor series solution

y”"'p(x)y,"'Q(x)y:O y(x()):co y'(x,))=cl

The first two coefficients are from the initial conditions:

The third coefficient can be found from the given differential equation rewritten as

y"(x):—p(x)y'—q(x)y, then evaluate y"(xo):—p(xg)y’(xg)—q(xo)y(xo)

To find the next coefficients, differentiate the equation and evaluate it at x,, :

andsoon ...

Then with the found y"")(x,) construct the Taylor series solution

y"(x{))
2!

y"(x,)

3! (x=x) +

-(x—x0)2+
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5.4 Euler Equation is a linear ODE with specific dependence of coefficients on x

2..n '
a,xy"+a,xy'+a,y=0

Change of variable: reduction to linear ODE with constant coefficients

x=ée", z:ln|x|

by _dydz _Tdy

dx dzdx xdz
oy (1) e () 1k L4 (e
dxy dx\ x dz x’dx xdx\dz x*dx  xdz\dz )dx x? dx

Substitute into equation:

5 1dz 1d°y 1dy
— |+ —— |+ =0
o [ X dx x%dZ’ h* x dz Y

2
v LLy

x? dz?

dy d’y dy
-a,—+a +a,—+a,y=0
‘dz ' d? T dz 2
d’y y
a, = + (a1 -a, )_ +a,y=0 Linear ODE with constant coefficients

II Find solution in the form:

y =xm
y'=m(m—-1)x""

Substitution into equation yields the linear ODE with constant coefficient:

a(,y”+(a,—a(,)y'+a2y:0

a,m’ +(a,—a,)m+a, =0 characteristic equation

The fundamental solutions are (find solutions of ODE, first, for x >0, then expand to x <0 ):

a) m,#m,cR

iy

[

m m
ol " i

Z
’

b) m,=m,=meR

¢)

m,=a +ib |x|a cos (bln|x|), |x|a sin(bln|x|)

Exercise: 5.4 #13
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6.1 The Laplace Transform

Piece-wise continuous function F()=>1(1) -[u,H (1)-u, (t)} , where f,(¢), t€[t,_,.t,] are continuous
k

£i(1) £.(1)

YOO

B A
I f(t)dt = lim I f(t)dt if the limit exists, then improper integral converges

a

v

Example: Itipdt converges for p >/, and diverges for p <1
Let f(¢)<g(t) and Jg(t)dt converges, then jf(t)dt converges

Let f(t)>g(¢) and ‘[g(t)dt diverges, then If(t)dt diverges

)

The Laplace Transform F(s) = ,é’{f(t)} = If(t)e'“dt

0

Existence Theorem 6.1.2 If f(¢)is piece-wise continuous in any [0, 4], and if
|f(t)| < Ke" for t >M , where K >0,M >0,a € R, (of exponential order),

then the Laplace transform F(s)=£{f (t)} exists for s >a, and

F(s)< . limF(s)=0,  limsF(s)<o

S—a §—>0 §—>00

Functions for which the Laplace transform exists: c, ¢, t’, 2¢”, cost, t°e""

Functions for which the Laplace transform does not exist: ¢

Laplace transform is linear £ {af(t) + ﬂg(t)} =aF(s)+BG(s)
Transform of the derivatives £ { f (t)} =F(s)

2070} =5 ()1 (0)

£{1(0)) =5°F (5)=5/ ()= 1'(0)
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6.2

Table of transforms: 1) F(s)
) !
s
1

i =z

s
ear ]

s—a

The Inverse Laplace Transform: £ {F (s)} =f (t)

The Inverse Transform is linear: £’ {aF(s)+ﬂG(s)} = af(t)+ﬁg(t)

To find inverse Laplace transform invert the Table of Laplace transform.

Sometimes partial fractions or convolution theorem is used.

Solution of the Initial Value Problems with the help of Laplace Transform

a()y"""ﬁy""azy:g(t)
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6.3

Unit Step Function u_(¢)

Heaviside function H(¢), typical name and notation in engineering literature

uo(f):{(l) 120

t<0

1 t>c

uf(t):{o t<c

Filter Function

0 t<a
ua(t)—u,)(t) =31 a<t<b
0 t>b

0 t<a
H(t—a)-H(t-b) =41 a<t<b

0 t>b oty

Express piece-wise continuous function in terms of the unit step function u(¢).

Example:

Express the function defined in terms of u, () as the piece-wise continuous function. Example:

Laplace Transform:

Translation of f (t)

Theorem 6.3.1:

Theorem 6.3.2

L’{uc (t)} = qu (l)e’"dz = T67¥tdt _ e

c

N

u, (t)f(t - c)

1)

u, (t)f(r - c)

f’{e’“ s21+]} =u,(t)sin(t—c)
£ {e"‘" Szi ]} =u,(t)cos(t—c)

,é’{e"f(t)} =F(s—c)
Vg {F(s —c)} =e"f(1)
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6.4 Differential Equations with Discontinuous Forcing Functions

Problem: 6.4 #1

V'+y=1(1) y(0)=y'(0)=0

y”+y=uo(t)—u3”(l)

s2Y+Y=£—e’3’”£
s s
Y: ] _ —37s ]
s(sz +1) s(sz +1)
y=1_ ZS saas Ly o ZS partial fractions
K (s +1) K s +1

y=1—cost—H(t—37z)-]+H(t—3ﬂ')cos(t—37r)

y:1—cost—H(t—37z')-[1+cos(t)]

y=1-cost, t<3r y=-2cost , t>3rx
2.
1_
0 5 10 15 D 5
t
A1
o

3z
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6.5

Impulse Function (or Dirac delta function) is defined by its properties:

5(1‘) 5(1):() forallx+#0 3(1)
[5(0)=1
j&(t):l forany a>0 0
5(t-c) 5(t—c)=0 forallx=c S(i=c)
[5(t-c)=1
Té‘(tfc)zl forany a>0
c—a 0 c
S(t-c)
N T /)
Integration with 5(1—c) J‘f(t)é‘(tfc) dt=f(c)
o f(c)
0 c

Laplace Transform

Solve:  y"+y=6(t-1,)
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6.5 #16

(a) V'+y=rfis y(0)=y'(0)=0, fﬁw, fi—>6(t-4)

—(4-k)s —(4+k)s
cyqy-Lte —_Le
2k s 2k s

Ji e—(4—k)s b e—(4+k)s
_Es(sz +1) _%s(sz +1)

Y:ief(wk): l_ ZS _ief(“k)s 1_ ZS
2k s s +1] 2k s s +1

Y

ylt) =yt (1) 1= cos[e - (4-k)]] fiu (0)[1—cos[[t~(4+K)]]

v ()=0 1<4-k
yk(t):ﬁ[l—cos[t—ﬁ—k)ﬂ 4-k<t<4+k
yk(t)=ﬁ[1—cos[t—(4—k):H—i[[—cos[z‘—(%&—k)ﬂ t>4+k
{iir{z)yk(t):iiﬁ})%k[]—cos[t—w—k)]]:iiirz)é[sin[t—(4—k)]J:0 d-k<i<dtk 5 1=4
{i_)rr(z‘yk(t)={i_}n{l){ﬁ[]—cos[t—(4—k)ﬂ—i[l—cos[r—(4+k)]]}

=iizl}{é[sin[t—@—k)ﬂ+é[sin[t—(4+k)ﬂ}=sin(t—4) t>4+k—>t>4

(b) V+y=06(1-4), »(0)=y(0)=0
T
SY+Y=e"
:SZ+] y(t)=sin(t—4)
Yk(t)

y(t)=u4(t)~sin(t—4) o 3 P P po
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6.6 The Convolution Theorem
Convolution f*g =jf(t—r)g(r)dr =jg(t—r)f(r)dr = g*f
0 0
Convolution Theorem L{f*g}=F(s)-G(s)
Vg {F(S)'G(S)}Zf*g
Example 1: Let function u () be defined by integral u(¢) = I(t—z')e’dr . Find L’{u(t)}
0
u(r) =I(t—z’)e’dr =fxg where f(t) =t, g(t)=¢
0
Llu()}  =2L{f*g)
=F(s)-G(s)
_L_1
¢ s—1
Example 2: Find L' _
e s’ (sz +1) .
1 1
ol
{SZ (sz +1)}
£'{e {1} £ {sint}}
ez (1(n)-£ {g(1)})
L'{F(s)-G(s)}
f*g =I(t—r)sinrdr = t—sint
0
Example 3: Find the solution of y"+’y = £ (1), y(0)=y'(0)=0

in terms of the convolution integral.

Calculate solution for =3, f(¢)=t.
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Find the inverse Laplace transform of




