5.1 Power Series

$$\int_{a_n} x^n \qquad \text{about } x = 0$$

$$\sum_{n=0}^{\infty} a_n (x - x_0)^n \qquad \text{about } x = x_0$$

convergence

series *converges* at x if the sequence of partial sums $\sum_{n=0}^{N} a_n (x-x_0)^n \to S$ converges.

absolute convergence

if the series of absolute values $\sum_{n=0}^{\infty} \left| a_n (x - x_0)^n \right|$ converges.

radius of convergence

$$R = \lim_{n \to \infty} \left| \frac{a_n}{a_{n+1}} \right|$$
 diverges converges diverges
$$x_0 - R \qquad x_0 \qquad x_0 + R$$

 $\sum_{n=0}^{\infty} a_n (x - x_0)^n$ absolutely converges for all $x_0 - R < x < x_0 + R$

Convergence at boundary points $x = x_0 \pm R$ has to be investigated separately.

Taylor Series

$$y(x) = \sum_{k=0}^{\infty} \frac{y^{(k)}(x_0)}{k!} \cdot (x - x_0)^k \qquad \text{MacLauren series:} \qquad y(x) = \sum_{k=0}^{\infty} \frac{y^{(k)}(0)}{k!} \cdot x^k$$

Analytic Function

Power series defines an *analytic function* in its interval of convergence:

$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n, \qquad x \in (x_0 - R, x_0 + R)$$

Function is called *analytic* at x_0 if it has a Taylor series expansion about $x = x_0$.

Operations

Let
$$f(x) = \sum_{n=0}^{\infty} a_n (x - x_0)^n$$
 and $g(x) = \sum_{n=0}^{\infty} b_n (x - x_0)^n$ be convergent in $(x_0 - R, x_0 + R)$:

summation

$$f(x) \pm g(x) = \sum_{n=0}^{\infty} (a_n \pm b_n)(x - x_0)^n$$

multiplication

$$f(x) \cdot g(x) = \left[\sum_{n=0}^{\infty} a_n (x - x_0)^n \right] \cdot \left[\sum_{n=0}^{\infty} b_n (x - x_0)^n \right] = \sum_{n=0}^{\infty} c_n (x - x_0)^n, \quad c_n = \sum_{k=0}^{n} a_k b_{n-k}$$

differentiation

$$f'(x) = \sum_{n=1}^{\infty} na_n (x - x_0)^{n-1}$$

$$f''(x) = \sum_{n=1}^{\infty} n(n-1)a_n(x-x_0)^{n-2}$$

Shift of index

$$\sum_{n=n_{o}}^{\infty} a_{n} x^{n+k} = \sum_{m=n_{o}+k}^{\infty} a_{m-k} x^{m}$$

$$m = n + k$$

Identity Theorem

If
$$\sum_{n=0}^{\infty} a_n (x - x_0)^n = 0$$
 for all x, then coefficients $a_n = 0$

Geometric series

$$\sum_{n=0}^{\infty} x^{n} = 1 + x + x^{2} + \dots = \frac{1}{1-x}, \text{ converges for } -1 < x < 1$$

Math-303

5.2 Power Series Solution of the 2nd order linear ODE (Method of Frobenius)

Consider the linear ODE with variable coefficients

$$P(x)y'' + Q(x)y' + R(x)y = 0$$
, where $P(x)$, $Q(x)$, $R(x)$ are polynomials (1)

If $P(x_0) \neq 0$, then x_0 is called an ordinary point.

If $P(x_1) = 0$, then x_1 is called a singular point. In general, $x_1 = a + ib$ can be a complex root.

1) Assume the solution to be in the form of *power series*, and differentiate it

$$y(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n$$

$$y'(x) = \sum_{n=1}^{\infty} nc_n (x - x_0)^{n-1}$$

$$y''(x) = \sum_{n=2}^{\infty} n(n-1)c_n(x-x_0)^{n-2}$$

- Substitute into ODE
- Combine in a single sigma summation term (change index of summation and write explicitly extra terms)
- Derive the *recurrence equation* for coefficients c_n , using the Identity Theorem.
- $y_1 = c_0 \cdot [\dots]$ Collect terms with coefficient c_0 : that yields one solution

 $y_2 = c_i \cdot [\dots]$ Collect terms with coefficient c_i : that yields the second solution

- $y(x) = c_0 y_1(x) + c_1 y_2(x)$ General Solution:
- $c_0 = y(x_0), c_1 = y_2'(x_0)$ Solution of IVP

If x_0 is an *ordinary* point, $P(x_0) \neq 0$, then the general solution of (1) is Theorem 5.3.1

$$y(x) = \sum_{n=0}^{\infty} c_n (x - x_0)^n = c_0 y_1 + c_1 y_2$$
 $c_0, c_1 \in \mathbb{R}$

where y_1, y_2 are two power series solution of equation (1)

with the *radius of convergence* $R \ge |x_0 - x_1|$, where $|x_0 - x_1|$ is the distance from the point of expansion x_0 to the closest singular point x_1 , i.e. the root of $P(x_1) = 0$, where x_1 can be a complex root.

5.3 Taylor series solution

Chapters 5-6

$$y'' + p(x)y' + q(x)y = 0$$
 $y(x_0) = c_0$ $y'(x_0) = c_1$

Look for solution in the form of the Taylor series about $x = x_0$:

$$y(x) = y(x_0) + y'(x_0) \cdot (x - x_0) + \frac{y''(x_0)}{2!} \cdot (x - x_0)^2 + \frac{y'''(x_0)}{3!} \cdot (x - x_0)^3 + \frac{y^{iv}(x_0)}{4!} \cdot (x - x_0)^4 + \dots$$

The first two coefficients are from the initial conditions:

$$y(x_0) = c_0$$

$$y'(x_0) = c_1$$

The third coefficient can be found from the given differential equation rewritten as

$$y''(x) = -p(x)y' - q(x)y$$
, then evaluate $y''(x_0) = -p(x_0)\overline{y'(x_0)} - q(x_0)\overline{y(x_0)}$

To find the next coefficients, differentiate the equation and evaluate it at x_0 :

$$y'''(x) = \left[-p(x)y' - q(x)y\right]' \qquad \Rightarrow \qquad y'''(x_0) = \dots$$

$$y^{iv}(x) = \lceil y'''(x) \rceil'$$
 \Rightarrow $y^{iv}(x_0) = \dots$

and so on ...

Then with the found $y^{(n)}(x_0)$ construct the Taylor series solution

$$y(x) = y(x_0) + y'(x_0) \cdot (x - x_0) + \frac{y''(x_0)}{2!} \cdot (x - x_0)^2 + \frac{y'''(x_0)}{3!} \cdot (x - x_0)^3 + \frac{y^{iv}(x_0)}{4!} \cdot (x - x_0)^4 + \dots$$

$$a_0 x^2 y'' + a_1 x y' + a_2 y = 0$$

I Change of variable: reduction to linear ODE with constant coefficients

$$x = e^z$$
, $z = ln|x|$

$$y' = \frac{dy}{dx} = \frac{dy}{dz}\frac{dz}{dx} = \frac{1}{x}\frac{dy}{dz}$$

$$y'' = \frac{d}{dx}y' = \frac{d}{dx}\left(\frac{1}{x}\frac{dy}{dz}\right) = -\frac{1}{x^2}\frac{dz}{dx} + \frac{1}{x}\frac{d}{dx}\left(\frac{dy}{dz}\right) = -\frac{1}{x^2}\frac{dz}{dx} + \frac{1}{x}\frac{d}{dz}\left(\frac{dy}{dz}\right)\frac{dz}{dx} = -\frac{1}{x^2}\frac{dz}{dx} + \frac{1}{x^2}\frac{d^2y}{dz^2}$$

Substitute into equation:

$$a_0 x^2 \left(-\frac{1}{x^2} \frac{dz}{dx} + \frac{1}{x^2} \frac{d^2 y}{dz^2} \right) + a_1 x \left(\frac{1}{x} \frac{dy}{dz} \right) + a_2 y = 0$$

$$-a_0 \frac{dy}{dz} + a_0 \frac{d^2y}{dz^2} + a_1 \frac{dy}{dz} + a_2 y = 0$$

$$a_0 \frac{d^2 y}{dz^2} + (a_1 - a_0) \frac{dy}{dz} + a_2 y = 0$$

Linear ODE with constant coefficients

II Find solution in the form:

$$y = x^m$$

$$y' = mx^{m-1}$$

$$y'' = m(m-1)x^{m-2}$$

Substitution into equation yields the linear ODE with constant coefficient:

$$a_0 y'' + (a_1 - a_0) y' + a_2 y = 0$$

$$a_0 m^2 + (a_1 - a_0) m + a_2 = 0$$

characteristic equation

The fundamental solutions are (find solutions of ODE, first, for x > 0, then expand to x < 0):

a)
$$m_1 \neq m_2 \in \mathbb{R}$$

$$|x|^{m_1}$$
, $|x|^{m_2}$

b)
$$m_1 = m_2 = m \in \mathbb{R}$$

$$|x|^m$$
, $|x|^m ln |x|$

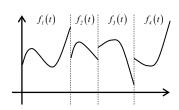
c)
$$m_1$$
, = $a \pm ib$

$$|x|^a \cos(b \ln |x|), \quad |x|^a \sin(b \ln |x|)$$

Exercise: 5.4 #13

6.1 The Laplace Transform

Piece-wise continuous function



$$f(t) = \sum_{k} f_k(t) \cdot \left[u_{t_{k-l}}(t) - u_{t_k}(t) \right]$$
, where $f_k(t)$, $t \in [t_{k-l}, t_k]$ are continuous

 $\int_{a}^{\infty} f(t)dt = \lim_{A \to \infty} \int_{a}^{A} f(t)dt$ if the limit exists, then **improper integral** converges

Example: $\int_{a}^{\infty} \frac{1}{t^{p}} dt$ converges for p > 1, and diverges for $p \le 1$

Let $f(t) \le g(t)$ and $\int_{a}^{\infty} g(t)dt$ converges, then $\int_{a}^{\infty} f(t)dt$ converges

Let $f(t) \ge g(t)$ and $\int_{a}^{\infty} g(t)dt$ diverges, then $\int_{a}^{\infty} f(t)dt$ diverges

The Laplace Transform

$$F(s) = \mathcal{L}\{f(t)\} = \int_{0}^{\infty} f(t)e^{-st}dt$$

Existence Theorem 6.1.2

If f(t) is piece-wise continuous in any [0, A], and if

 $|f(t)| \le Ke^{at}$ for t > M, where $K > 0, M > 0, a \in R$, (of exponential order),

then the Laplace transform $F(s) = \mathcal{L}\{f(t)\}\$ exists for s > a, and

$$F(s) \le \frac{K}{s-a}$$
, $\lim_{s \to \infty} F(s) = 0$, $\lim_{s \to \infty} sF(s) < \infty$

Functions for which the Laplace transform exists: c, t, t^5 , $2e^{9t}$, cost, t^6e^{10t} ,...

Functions for which the Laplace transform does not exist: e^{t^2}

Laplace transform is *linear*

$$\mathcal{L}\left\{\alpha f(t) + \beta g(t)\right\} = \alpha F(s) + \beta G(s)$$

Transform of the derivatives

$$\mathcal{L}\left\{f\left(t\right)\right\} = F\left(s\right)$$

$$\mathcal{L}\left\{f'(t)\right\} = sF(s) - f(0)$$

$$\mathcal{L}\left\{f''(t)\right\} = s^2 F(s) - s f(\theta) - f'(\theta)$$

October 30, 2017

Table of transforms:

f(t)	F(s)
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
e^{at}	$\frac{1}{s-a}$

The Inverse Laplace Transform:

$$\mathcal{L}^{-1}\left\{F\left(s\right)\right\}=f\left(t\right)$$

The Inverse Transform is linear:

$$\mathcal{L}^{-1}\left\{\alpha F(s) + \beta G(s)\right\} = \alpha f(t) + \beta g(t)$$

To find inverse Laplace transform invert the Table of Laplace transform. Sometimes partial fractions or convolution theorem is used.

6.2 Solution of the Initial Value Problems with the help of Laplace Transform

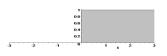
$$a_0y'' + a_1y' + a_2y = g(t)$$

7

6.3 Unit Step Function $u_c(t)$ Heaviside function H(t), typical name and notation in engineering literature

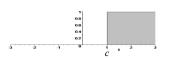
$$u_0(t) = \begin{cases} 1 & t \ge 0 \\ 0 & t < 0 \end{cases}$$

$$H(t) = \begin{cases} 1 & t > 0 \\ 0 & t < 0 \end{cases}$$



$$u_c(t) = \begin{cases} 1 & t \ge c \\ 0 & t < c \end{cases}$$

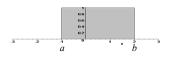
$$H(t-c) = \begin{cases} 1 & t > c \\ 0 & t < c \end{cases}$$



Filter Function

$$u_a(t) - u_b(t) = \begin{cases} 0 & t < a \\ 1 & a < t < b \\ 0 & t > b \end{cases}$$

$$u_{a}(t) - u_{b}(t) = \begin{cases} 0 & t < a \\ 1 & a < t < b \\ 0 & t > b \end{cases} \qquad H(t-a) - H(t-b) = \begin{cases} 0 & t < a \\ 1 & a < t < b \\ 0 & t > b \end{cases}$$



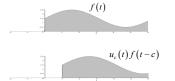
Express piece-wise continuous function in terms of the unit step function $u_c(t)$. Example:

Express the function defined in terms of $u_c(t)$ as the piece-wise continuous function. Example:

Laplace Transform:

$$\mathcal{L}\left\{u_{c}(t)\right\} = \int_{0}^{\infty} u_{c}(t)e^{-st}dt = \int_{c}^{\infty} e^{-st}dt = \frac{e^{-cs}}{s}$$

Translation of f(t)



Theorem 6.3.1:

$$\mathcal{L}\left\{u_{c}(t)f(t-c)\right\} = e^{-cs}F(s)$$

$$\mathcal{L}^{-1}\left\{e^{-cs}F(s)\right\} = u_{c}(t)f(t-c)$$

$$\mathcal{L}^{-1}\left\{e^{-cs}\frac{1}{s}\right\} = u_c(t)$$

$$\mathcal{L}^{-1}\left\{e^{-cs}\frac{1}{s^2+1}\right\} = u_c(t)\sin(t-c)$$

$$\mathcal{L}^{-1}\left\{e^{-cs}\frac{s}{s^2+1}\right\} = u_c(t)\cos(t-c)$$

Theorem 6.3.2

$$\mathcal{L}\left\{e^{ct}f(t)\right\} = F(s-c)$$

$$\mathcal{L}^{-1}\left\{F\left(s-c\right)\right\}=e^{ct}f\left(t\right)$$

$$\mathcal{L}^{-1}\left\{\frac{1}{\left(s-2\right)^2+1}\right\} = e^{2t}\sin(t)$$

6.4 Differential Equations with Discontinuous Forcing Functions

Problem: 6.4 #1

$$y'' + y = f(t)$$

$$y(\theta) = y'(\theta) = \theta$$

$$y'' + y = u_0(t) - u_{3\pi}(t)$$

$$s^{2}Y + Y = \frac{1}{s} - e^{-3\pi s} \frac{1}{s}$$

$$Y = \frac{1}{s(s^2 + 1)} - e^{-3\pi s} \frac{1}{s(s^2 + 1)}$$

$$Y = \frac{1}{s} - \frac{s}{\left(s^2 + I\right)} - e^{-3\pi s} \frac{1}{s} + e^{-3\pi s} \frac{s}{s^2 + I}$$

partial fractions

$$y = 1 - \cos t - H(t - 3\pi) \cdot I + H(t - 3\pi)\cos(t - 3\pi)$$

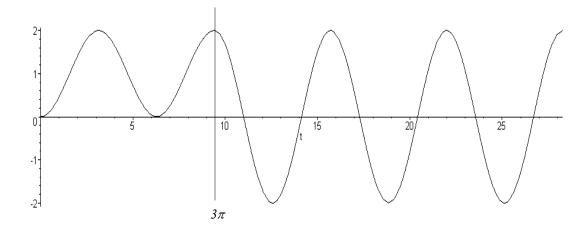
$$y = 1 - \cos t - H(t - 3\pi) \cdot \lceil 1 + \cos(t) \rceil$$

$$y = 1 - \cos t$$
,

 $t < 3\pi$

$$y = -2\cos t$$
,

 $t > 3\pi$



9

6.5 Impulse Function (or Dirac delta function) is defined by its properties:

$$\delta(t) = 0 \text{ for all } x \neq 0$$

$$\int_{-\infty}^{\infty} \delta(t) = 1$$

$$\int_{-a}^{a} \delta(t) = 1 \text{ for any } a > 0$$

$$\delta(t) = 0 \text{ for all } x \neq 0$$

$$\delta(t) = 0 \text{ for all } x \neq 0$$

$$\delta(t) = 1 \text{ for any } a > 0$$

$$\delta(t-c) = 0 \text{ for all } x \neq c$$

$$\int_{-\infty}^{\infty} \delta(t-c) = 1$$

$$\int_{c-a}^{c+a} \delta(t-c) = 1 \text{ for any } a > 0$$

$$\delta(t-c) = 0$$

$$\delta(t-c) = 1$$

$$\int_{c-a}^{\infty} \delta(t-c) = 1 \text{ for any } a > 0$$

Integration with $\delta(t-c)$ $\int_{-\infty}^{\infty} f(t)\delta(t-c) dt = f(c)$

Laplace Transform $\mathscr{E}\left\{\delta(t-c)\right\} = \int_{-\infty}^{\infty} e^{-st} \delta(t-c) dt = e^{-sc}$

Solve: $y'' + y = \delta(t - t_0)$ y(0) = y'(0) = 0

6.5 #16

(a)
$$y'' + y = f_k, y(0) = y'(0) = 0, f_k = \frac{u_{4-k}(t) - u_{4+k}(t)}{2k}, f_k \to \delta(t-4)$$

$$s^2 Y + Y = \frac{1}{2k} \frac{e^{-(4-k)s}}{s} - \frac{1}{2k} \frac{e^{-(4+k)s}}{s}$$

$$Y = \frac{1}{2k} \frac{e^{-(4-k)s}}{s(s^2+1)} - \frac{1}{2k} \frac{e^{-(4+k)s}}{s(s^2+1)}$$

$$Y = \frac{1}{2k} e^{-(4-k)s} \left[\frac{1}{s} - \frac{s}{s^2+1} \right] - \frac{1}{2k} e^{-(4+k)s} \left[\frac{1}{s} - \frac{s}{s^2+1} \right]$$

$$y_k(t) = \frac{1}{2k} u_{4-k}(t) \left[1 - \cos\left[t - \left(4 - k\right)\right] \right] - \frac{1}{2k} u_{4+k}(t) \left[1 - \cos\left[t - \left(4 + k\right)\right] \right]$$

$$y_{k}(t) = 0 t < 4 - k$$

$$y_{k}(t) = \frac{1}{2k} \Big[1 - \cos[t - (4 - k)] \Big] 4 - k < t < 4 + k$$

$$y_{k}(t) = \frac{1}{2k} \Big[1 - \cos[t - (4 - k)] \Big] - \frac{1}{2k} \Big[1 - \cos[t - (4 + k)] \Big] t > 4 + k$$

$$\lim_{k \to 0} y_k\left(t\right) = \lim_{k \to 0} \frac{1}{2k} \left[1 - \cos\left[t - \left(4 - k\right)\right]\right] = \lim_{k \to 0} \frac{1}{2} \left[\sin\left[t - \left(4 - k\right)\right]\right] = 0 \qquad \qquad 4 - k < t < 4 + k \quad \xrightarrow{k \to 0} \quad t = 4$$

$$\lim_{k \to 0} y_k(t) = \lim_{k \to 0} \left\{ \frac{1}{2k} \left[1 - \cos \left[t - (4 - k) \right] \right] - \frac{1}{2k} \left[1 - \cos \left[t - (4 + k) \right] \right] \right\}$$

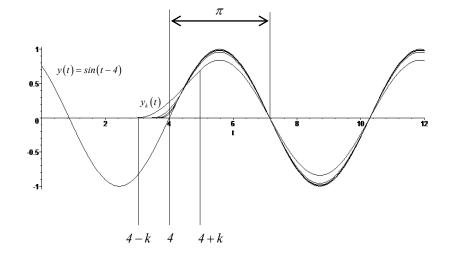
$$= \lim_{k \to 0} \left\{ \frac{1}{2} \left[\sin \left[t - (4 - k) \right] \right] + \frac{1}{2} \left[\sin \left[t - (4 + k) \right] \right] \right\} = \sin(t - 4) \qquad t > 4 + k \to t > 4$$

(b)
$$y'' + y = \delta(t - 4), \quad y(\theta) = y'(\theta) = 0$$

$$s^{2}Y + Y = e^{-4s}$$

$$Y = \frac{e^{-4s}}{s^{2} + 1}$$

$$y(t) = u_{4}(t) \cdot sin(t - 4)$$



6.6 The Convolution Theorem

Convolution

$$f * g = \int_{0}^{t} f(t-\tau)g(\tau)d\tau = \int_{0}^{t} g(t-\tau)f(\tau)d\tau = g * f$$

Convolution Theorem

$$\mathcal{L}\{f*g\} = F(s) \cdot G(s)$$

$$\mathcal{L}^{-l}\left\{F(s)\cdot G(s)\right\} = f * g$$

Example 1:

Let function u(t) be defined by integral $u(t) = \int_0^t (t-\tau)e^{\tau}d\tau$. Find $\mathcal{L}\{u(t)\}$.

$$u(t) = \int_{0}^{t} (t - \tau)e^{\tau} d\tau = f * g \qquad \text{where } f(t) = t, \ g(t) = e^{t}$$

$$\mathcal{L}\{u(t)\} = \mathcal{L}\{f * g\}$$

$$= F(s) \cdot G(s)$$

$$= \frac{1}{s^{2}} \cdot \frac{1}{s - 1}$$

Example 2:

Find
$$\mathcal{L}^{I}\left\{\frac{1}{s^{2}(s^{2}+I)}\right\}$$
.

 $\mathcal{L}^{I}\left\{\frac{1}{s^{2}}\cdot\frac{1}{(s^{2}+I)}\right\}$
 $\mathcal{L}^{I}\left\{\mathcal{L}\left\{t\right\}\cdot\mathcal{L}\left\{sint\right\}\right\}$
 $\mathcal{L}^{I}\left\{\mathcal{L}\left\{f(t)\right\}\cdot\mathcal{L}\left\{g(t)\right\}\right\}$
 $\mathcal{L}^{I}\left\{F(s)\cdot G(s)\right\}$
 $f*g=\int_{0}^{t}(t-\tau)sin\tau d\tau=t-sint$

Example 3:

Find the solution of $y'' + \omega^2 y = f(t)$, y(0) = y'(0) = 0

in terms of the convolution integral.

Calculate solution for $\omega = 3$, f(t) = t.

Chapters 5-6

Find the inverse Laplace transform of

