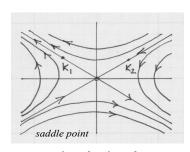
Chapter 7

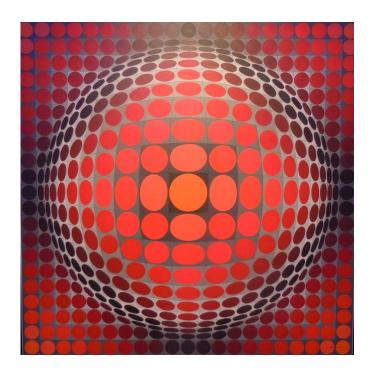
November 16, 2017

Systems of 1st Order Linear Differential Equations



 $\lambda_1 > 0$, $\lambda_2 < 0$

Math-303



7.1 LINEAR SYSTEMS OF THE 1st ORDER ODE's

Linear system

$$\mathbf{x}' = P(t)\mathbf{x} + \mathbf{g}(t)$$

$$\mathbf{x}' = P(t)\mathbf{x} + \mathbf{g}(t)$$
 $\mathbf{x}(t_0) = \mathbf{x}^0$ initial condition

(14)

$$x'_{1} = p_{11}(t)x_{1} + p_{12}(t)x_{2} + \dots + p_{1n}(t)x_{n} + g_{1}(t)$$

$$x'_{2} = p_{2l}(t)x_{1} + p_{22}(t)x_{2} + \dots + p_{ln}(t)x_{n} + g_{2}(t)$$

$$x'_{n} = p_{n1}(t)x_{1} + p_{n2}(t)x_{2} + \dots + p_{nn}(t)x_{n} + g_{n}(t)$$

Homogeneous system

$$\mathbf{x}' = P(t)\mathbf{x}$$

Reduction of nth order linear ODE

$$y^{(n)} + a_1 y^{(n-1)} + \dots + a_n y = g$$

to a system of n 1st order ODEs:

$$x_I = y$$

$$x_1' = y' = x_2$$

$$x_2 = y'$$

$$x_2' = v'' = x_2$$

$$x_3 = y'''$$

$$x_3' = y''' = x$$

$$x_{n-1} = y^{(n-2)}$$

$$x_{n-1} = y^{(n-2)}$$
 $x'_{n-1} = y^{(n-1)} = x_n$

$$x_n = y^{(n-1)}$$

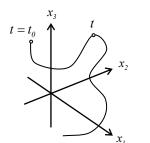
$$x'_n = y^{(n)} = -a_1 x_n - \dots - a_n x_1 + g$$

Solution, parametric graph

$$x_I(t)$$

 $x_2(t)$

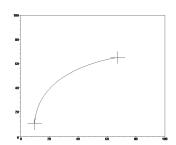
$$x_3(t)$$



Modeling of interconnecting tanks

(7.1 # 22)

$$x = x_1(t), y = x_2(t), t \ge 0$$



Existence Theorems (7.1.1 and 7.1.2)

7.2 Review of Matrices

Matrix
$$m \times n$$
 $\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = (a_{ij})_{n \times m}$

$$n \times n \qquad \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix} \qquad = (a_{ij})_{n \times n} \quad \text{square matrix}$$

Vector
$$n \times 1$$
 $\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ = (x_i) column vector

Transpose
$$\mathbf{A}^T = (a_{ji})$$
 $\mathbf{x}^T = (x_1, x_2, ..., x_n)$

Conjugate
$$\overline{\mathbf{A}} = (\overline{a}_{ij})$$
 $\overline{\mathbf{x}} = (\overline{x}_{i})$

Adjoint
$$A^* = \overline{A}^T$$

Self-adjoint (Hermitian) if $A^* = A$ (for real matrices, $A^T = A$ symmetric)

Matrix Algebra:
$$\mathbf{A} = \mathbf{B}$$
 $a_{ij} = b_{ij}$ for all i and j

$$\mathbf{I}_{n\times n} \qquad \qquad \mathbf{I} = \begin{bmatrix} I & 0 & \cdots & 0 \\ 0 & I & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & a_{nn} \end{bmatrix}$$

$$\mathbf{A} + \mathbf{B} = \left(a_{ij} + b_{ij} \right) \qquad \qquad \mathbf{A} + \mathbf{B} = \mathbf{B} + \mathbf{A}$$

$$\mathbf{A} + \mathbf{0} = \mathbf{0} + \mathbf{A} = \mathbf{A}$$

$$k\mathbf{A} = (ka_{ij})$$

$$\mathbf{A}_{m \times n} \mathbf{B}_{n \times p} = \left(c_{ij} \right)_{m \times p} \qquad c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \qquad \text{(in general, } \mathbf{AB} \neq \mathbf{BA} \text{)}$$

$$IA = AI$$
 for square matrices

$$0A = A0$$
 for square matrices

Matrix inverse

$$\mathbf{A}\mathbf{A}^{-l} = \mathbf{A}^{-l}\mathbf{A} = \mathbf{I}$$

(if $\det \mathbf{A} \neq 0$, then inverse \mathbf{A}^{-1} exists)

$$(2 \times 2 \ matrix)$$

$$\mathbf{A}^{-l} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}^{-l} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{A} \mid \mathbf{I} \end{bmatrix} \xrightarrow{Gaussian} \begin{bmatrix} \mathbf{I} \mid \mathbf{A}^{-I} \end{bmatrix} \text{ row reduction}$$

Products of vectors:

$$\mathbf{x}^T \mathbf{y} = \sum_{i=1}^n x_i y_i$$

$$(\mathbf{x},\mathbf{y}) = \sum_{i=1}^{n} x_{i} \overline{y}_{i} = \mathbf{x}^{T} \overline{\mathbf{y}}$$

inner (scalar) product

Properties:

$$(x,y) = \overline{(y,x)}$$

$$(\alpha \mathbf{x}, \mathbf{y}) = \alpha(\mathbf{x}, \mathbf{y})$$

$$(\mathbf{x},\alpha\mathbf{y}) = \overline{\alpha}(\mathbf{x},\mathbf{y})$$

$$(x,y+z) = (x,y) + (x,z)$$

Norm

$$\|\mathbf{x}\| = \sqrt{(\mathbf{x},\mathbf{x})}$$

Orthogonality

$$\mathbf{x} \perp \mathbf{y}$$
 if $(\mathbf{x}, \mathbf{y}) = 0$

3-D coordinate vectors

$$\mathbf{i} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}, \ \mathbf{j} = \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}, \ \mathbf{k} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

Matrix Functions

$$\mathbf{A}(t) = \begin{bmatrix} a_{11}(t) & a_{12}(t) & \cdots & a_{1n}(t) \\ a_{21}(t) & a_{22}(t) & \cdots & a_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1}(t) & a_{m2}(t) & \cdots & a_{mn}(t) \end{bmatrix} = (a_{ij}(t)), \qquad \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$

$$\mathbf{A}'(t) = \left(a'_{ij}(t)\right)$$

$$\int \mathbf{A}(t)dt = \left(\int a'_{ij}(t)dt\right)$$

7.3 Systems of Linear Algebraic Equations

System of algebraic equations Ax = b

Augmented matrix \[\begin{array}{c|c} A & b \end{array}

RREF

Solution

Linearly independence vectors $\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_n$ are linearly independent if

 $c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n = \mathbf{0}$ only if all $c_n = 0$

n vectors of length *n*: $\mathbf{x}_{1}, \mathbf{x}_{2}, ..., \mathbf{x}_{n} \qquad \mathbf{x}_{m} = \begin{bmatrix} x_{1m} \\ x_{2m} \\ \vdots \\ x \end{bmatrix}$

Fact: $det[\mathbf{x}_1 \ \mathbf{x}_2 \ ... \ \mathbf{x}_n] \neq 0 \iff \mathbf{x}_1, \mathbf{x}_2, ..., \mathbf{x}_n \text{ are linearly independent}$

Eigenvalue problem: $Ax = \lambda x$ $x \neq 0$

Solve characteristic equation: $|\mathbf{A} - \lambda \mathbf{I}| = 0$ \Rightarrow λ_n are called *eigenvalues*

Find eigenvectors by solving $(\mathbf{A} - \lambda_n \mathbf{I})\mathbf{k}_n = \mathbf{0}$ \Rightarrow \mathbf{k}_n is called an *eigenvector* corresponding to eigenvalue λ_n

1) Real distinct eigenvalues $(\lambda_1 - \lambda)(\lambda_2 - \lambda)\cdots(\lambda_n - \lambda) = 0$ There exist *n* linearly independent eigenvectors $\mathbf{k}_1, \mathbf{k}_2, \cdots, \mathbf{k}_n$

corresponding to $\lambda_1, \lambda_2, ..., \lambda_n$

2) Root of multiplicity s $(\lambda_1 - \lambda)^s = 0$ There can be more than one lin.indep. $\mathbf{k}_1, \dots, \mathbf{k}_m$ corresponding to λ_1

(*m* is called *geometric* multiplicity)
(*s* is called *algebraic* multiplicity)

3) Complex roots $\lambda_1 = \alpha + \beta i \qquad \mathbf{k}_1 = \mathbf{b}_1 + i\mathbf{b}_2 \qquad \text{appear in conjugate pairs}$ $\lambda_2 = \alpha - \beta i \qquad \mathbf{k}_2 = \mathbf{b}_1 - i\mathbf{b}_2$

7.4 Basic Theory of Systems of 1st Order Linear Differential Equations

Matrix-vector notations:

$$\mathbf{k} = \begin{bmatrix} k_{1} \\ k_{2} \\ \vdots \\ k_{n} \end{bmatrix}, \ \mathbf{x}_{m} = \begin{bmatrix} x_{1m} \\ x_{2m} \\ \vdots \\ x_{nm} \end{bmatrix}, \ \mathbf{P}(t) = \begin{bmatrix} p_{11}(t) & p_{12}(t) & \cdots & p_{1n}(t) \\ p_{21}(t) & p_{22}(t) & \cdots & p_{2n}(t) \\ \vdots & \vdots & \ddots & \vdots \\ p_{n1}(t) & p_{n2}(t) & \cdots & p_{nn}(t) \end{bmatrix}, \ \mathbf{c} = \begin{bmatrix} c_{1} \\ c_{2} \\ \vdots \\ c_{n} \end{bmatrix}$$

Homogeneous System

$$\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}(t) \qquad t \in (a,b)$$
 (3)

Initial conditions

 $\mathbf{x}(t_0) = \mathbf{x}_0$

Superposition principle:

If $\mathbf{x}_1, \mathbf{x}_2$ are solutions of (3), then $c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2$ is also a solution (Th 7.4.1)

Linear dependence

It is said that $\mathbf{x}_1(t), \mathbf{x}_2(t), ..., \mathbf{x}_n(t)$ are *linearly dependent* on (a,b) if there exists a set of constants $c_1, c_2, ..., c_n$ not all equal to zero, such that $c_1\mathbf{x}_1(t)+c_2\mathbf{x}_2(t)+...+c_n\mathbf{x}_n(t)=\mathbf{0}$ for all $t\in(a,b)$.

Otherwise, $\mathbf{x}_1(t), \mathbf{x}_2(t), \dots, \mathbf{x}_n(t)$ are *linearly independent* on (a,b).

Wronskian

$$W(t) = det \left[\mathbf{x}_{I}(t) \ \mathbf{x}_{2}(t) \ \dots \ \mathbf{x}_{n}(t) \right]$$

Solutions $\mathbf{x}_{t}(t), \mathbf{x}_{2}(t), \dots, \mathbf{x}_{n}(t)$ are *linearly independent* at t, if $W(t) \neq 0$

Theorem 7.4.2

If $\mathbf{x}_{1}(t)$, $\mathbf{x}_{2}(t)$,..., $\mathbf{x}_{n}(t)$ are linearly independent solutions of $\mathbf{x}'(t) = \mathbf{P}(t)\mathbf{x}(t)$, then any solution of (3) can be written as $\mathbf{\varphi}(t) = c_{1}\mathbf{x}_{1}(t) + c_{2}\mathbf{x}_{2}(t) + ... + c_{n}\mathbf{x}_{n}(t)$

Theorem 7.4.3

If $\mathbf{x}_{I}(t), \mathbf{x}_{2}(t), \dots, \mathbf{x}_{n}(t)$ are solutions of (3) in (a,b), then $W(t) = det \left[\mathbf{x}_{I}(t) \ \mathbf{x}_{2}(t) \ \dots \ \mathbf{x}_{n}(t) \right] \equiv 0 \text{ in } (a,b) \text{ or } W(t) \neq 0 \text{ in } (a,b).$ $W(t) = ce^{\left[\left[p_{II}(t) + \dots + p_{Im}(t) \right] dt}$

Theorem 7.4.4

Existence of at least one fundamental solution

Fundamental matrix

$$\mathbf{\Psi} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{bmatrix} \qquad W = \det \mathbf{\Psi} \neq 0, \ t \in (a,b)$$

General solution

$$\mathbf{x} = \mathbf{\Psi}\mathbf{c}$$

$$\mathbf{x}(t) = c_1 \mathbf{x}_1(t) + c_2 \mathbf{x}_2(t) + \dots + c_n \mathbf{x}_n(t)$$

Solution of IVP

$$\mathbf{x}' = \mathbf{P}\mathbf{x} \qquad \qquad \mathbf{x}\left(t_{\theta}\right) = \mathbf{x}_{\theta}$$

$$\mathbf{x}(t) = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(t_0)\mathbf{x}_0$$

Fundamental sets for homogeneous linear systems with constant coefficients

$$\mathbf{x}' = \mathbf{A}\mathbf{x} \text{, where } \mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}, \quad \mathbf{x}(t) = \begin{bmatrix} x_1(t) \\ x_2(t) \\ \vdots \\ x_n(t) \end{bmatrix}$$
Trial form: $\mathbf{x}(t) = \mathbf{k}e^{\lambda t}$, $\mathbf{k} = \begin{bmatrix} k_1 \\ k_2 \\ \vdots \\ k_n \end{bmatrix}$

7.5 I Real distinct eigenvalues

Characteristic equation
$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$
 \Rightarrow $(\lambda_1 - \lambda)(\lambda_2 - \lambda)\cdots(\lambda_n - \lambda) = 0$

Find eigenvectors by solving
$$(\mathbf{A} - \lambda_k \mathbf{I}) \mathbf{k}_k = \mathbf{0}$$

There exist *n* linearly independent eigenvectors $\mathbf{k}_1, \mathbf{k}_2, \cdots, \mathbf{k}_n$ corresponding to $\lambda_1, \lambda_2, \ldots, \lambda_n$

The fundamental set:
$$\mathbf{x}_1 = e^{\lambda_1 t} \mathbf{k}_1, \ \mathbf{x}_2 = e^{\lambda_2 t} \mathbf{k}_2, \ \cdots, \ \mathbf{x}_s = e^{\lambda_n t} \mathbf{k}_s$$

7.8 II Repeated eigenvalues

Characteristic equation
$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$
 \Rightarrow $(\lambda_1 - \lambda)^s = 0$ root of multiplicity s

Find eigenvectors by solving
$$(\mathbf{A} - \lambda_1 \mathbf{I})\mathbf{k} = \mathbf{0}$$
 (algebraic multiplicity)

Case 1 If there exist linearly independent eigenvectors
$$\mathbf{k}_1, \mathbf{k}_2, \dots, \mathbf{k}_s$$
 corresponding to λ_1 (geom.)

The fund. set:
$$\mathbf{x}_1 = e^{\lambda_1 t} \mathbf{k}_1, \ \mathbf{x}_2 = e^{\lambda_1 t} \mathbf{k}_2, \ \cdots, \ \mathbf{x}_s = e^{\lambda_1 t} \mathbf{k}_s$$

Case 2 If there exists only one independent eigenvector \mathbf{k} corresponding to λ_i

Then solve
$$(\mathbf{A} - \lambda_{_{I}} \mathbf{I}) \mathbf{p} = \mathbf{k}$$
$$(\mathbf{A} - \lambda_{_{I}} \mathbf{I}) \mathbf{q} = \mathbf{p}$$
$$:$$

To find vectors \mathbf{p} , \mathbf{q} , ...

The fund. Set:
$$\mathbf{x}_1 = e^{\lambda_1 t} \mathbf{k}, \ \mathbf{x}_2 = e^{\lambda_1 t} \left(t \mathbf{k} + \mathbf{p} \right), \ \mathbf{x}_3 = e^{\lambda_1 t} \left(\frac{t^2}{2} \mathbf{k} + \mathbf{p}t + \mathbf{q} \right), \dots$$

7.6 III Complex eigenvalues

Conjugate pair of complex roots
$$|\mathbf{A} - \lambda \mathbf{I}| = 0$$
 \Rightarrow $\lambda_1 = \alpha + \beta i$ $\lambda_2 = \alpha - \beta i$

Find eigenvectors by solving
$$(\mathbf{A} - \lambda_1 \mathbf{I}) \mathbf{k}_1 = \mathbf{0}$$
 $\mathbf{k}_1 = \mathbf{a} + i\mathbf{b}$ $\mathbf{k}_2 = \mathbf{a} - i\mathbf{b}$

The fundamental set:
$$\mathbf{x}_{1} = e^{\alpha t} (\mathbf{a} \cos \beta t - \mathbf{b} \sin \beta t)$$
$$\mathbf{x}_{2} = e^{\alpha t} (\mathbf{a} \sin \beta t + \mathbf{b} \cos \beta t)$$

$$x' = ax + by$$
$$y' = cx + dy$$

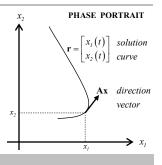
$$\mathbf{A} = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, \ \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

Characteristic Equation:

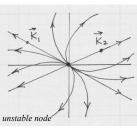
$$|\mathbf{A} - \lambda \mathbf{I}| = \lambda^2 - (a+d)\lambda + ad - bc = 0$$

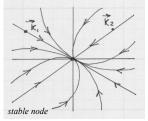
Eigenvalues:

$$\lambda_{l,2} = \frac{\left(a+d\right) \pm \sqrt{\left(a+d\right)^2 - 4\left(ad-bc\right)}}{2} = \frac{Tr\mathbf{A} \pm \sqrt{\Delta}}{2}$$

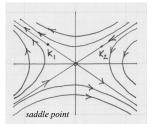


I
$$\Delta > 0$$
, $\lambda_1 \neq \lambda_2 \in R$, $\mathbf{x}(t) = c_1 \mathbf{k}_1 e^{\lambda_1 t} + c_2 \mathbf{k}_2 e^{\lambda_2 t}$





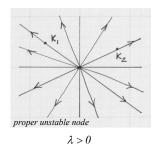
$$\lambda_1 < 0, \quad \lambda_2 < 0$$



$$\lambda_1 > 0, \ \lambda_2 < 0$$

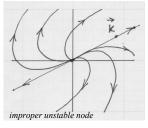
II
$$\Delta = 0$$
, $\lambda_1 = \lambda_2 = \lambda \in R$

a) Two independent \mathbf{k}_1 , \mathbf{k}_2 $\mathbf{x}(t) = c_1 \mathbf{k}_1 e^{\lambda t} + c_2 \mathbf{k}_2 e^{\lambda t}$



proper stable node $\lambda < 0$

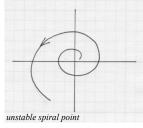
b) One independent **k** (find **p**) $\mathbf{x}(t) = c_1 \mathbf{k} e^{\lambda t} + c_2 (\mathbf{k} t + \mathbf{p}) e^{\lambda t}$



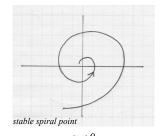
 $\lambda > 0$

III
$$\Delta < 0$$
 $\lambda_{l,2} = \alpha \pm \beta i$, $\mathbf{k}_{l,2} = \mathbf{a} \pm i\mathbf{b}$

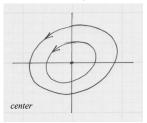
a) $\alpha \neq 0$, $\mathbf{x} = \left[c_1 (\mathbf{a} \cos \beta t - \mathbf{b} \sin \beta t) + c_2 (\mathbf{a} \cos \beta t + \mathbf{b} \sin \beta t) \right] e^{\alpha t}$



 $\alpha > 0$



b) $\alpha = 0$, $\lambda_{1,2} = \pm \beta i$, $x = c_1 (\mathbf{a} \cos \beta t - \mathbf{b} \sin \beta t) + c_2 (\mathbf{a} \cos \beta t + \mathbf{b} \sin \beta t)$



7.7 Fundamental Matrix

 $\mathbf{x}' = P\mathbf{x}$, $\mathbf{x}(t_0) = \mathbf{x}^0 = \begin{bmatrix} x_I^0 \\ \vdots \\ x_n^0 \end{bmatrix}$ General solution: $\mathbf{x} = c_1 \mathbf{x}_1 + c_2 \mathbf{x}_2 + \dots + c_n \mathbf{x}_n$ System of ODE's

Ψ

$$\mathbf{x}_{k}' = P\mathbf{x}_{k}$$

$$\mathbf{\Psi} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \dots & \mathbf{x}_n \end{bmatrix}$$

$$\Psi' = P\Psi$$

$$\mathbf{x}(t) = \mathbf{\Psi}(t)\mathbf{c}$$

General solution

$$\mathbf{x}(t) = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(t_0)\mathbf{x}^0$$

Solution of IVP

$$\mathbf{x}'_k = P\mathbf{x}_k$$

$$\mathbf{x}_{k}(0) = \mathbf{e}_{k} = \begin{bmatrix} 0 \\ \vdots \\ 1 \\ \vdots \\ 0 \end{bmatrix} \leftarrow k^{th}$$

$$\mathbf{\Phi} = \left[\mathbf{x}_1 \ \mathbf{x}_2 \ \dots \ \mathbf{x}_n \right]$$

$$\Phi' = P\Phi$$

$$\Phi(\theta) = I$$

$$\mathbf{\Phi}^{-l}(\theta) = \mathbf{I}$$

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{c}$$

$$\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{x}^{\theta}$$

$$\mathbf{\Phi}(t) = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(0)$$

$$\mathbf{\Phi} = e^{\mathbf{A}t}$$

The *matrix exponential function* (A is a constant matrix):

$$\mathbf{x}' = \mathbf{A}\mathbf{x}$$
 $\mathbf{x}(\theta) = \mathbf{x}^{\theta}$

$$e^{\mathbf{A}t} = \sum_{n=0}^{\infty} \frac{(t\mathbf{A})^n}{n!} = \mathbf{I} + t\mathbf{A} + \frac{t^2}{2!}\mathbf{A}^2 + \dots + \frac{t^n}{n!}\mathbf{A}^n + \dots$$

$$e^{\mathbf{A}t} = \mathbf{\Phi}(t$$

$$e^{\mathbf{A}t} = \mathbf{\Psi}(t)\mathbf{\Psi}^{-1}(0)$$

$$\left(e^{\mathbf{A}t}\right)' = \mathbf{A}e^{\mathbf{A}t} \qquad e^{\mathbf{A}\cdot\theta} = \mathbf{I}$$

$$(\Phi)' = A\Phi \qquad \Phi(\theta) = I$$

$$\Phi(\theta) = I$$

 Φ and e^{At} are solutions of the same IVP

$$\mathbf{x}(t) = e^{t\mathbf{A}}\mathbf{x}^{\theta}$$

7.9 Solution of the non-homogeneous system

$$\mathbf{x}' = P(t)\mathbf{x} + \mathbf{g}(t)$$
 $\mathbf{x}(t_0) = \mathbf{x}^0$

I Diagonalization

1) Solve Eigenvalue Problem: $|\mathbf{A} - \lambda \mathbf{I}| = 0 \implies \lambda_1, \lambda_2, ..., \lambda_n, \mathbf{k}_1, \mathbf{k}_2, ..., \mathbf{k}_n$

2) Construct a transformation matrix $\mathbf{T} = [\mathbf{k}_1 \ \mathbf{k}_2 \ \cdots \ \mathbf{k}_n]$ (if eigenvalues are lin.ind.)

3) Find inverse T^{-1} (Transformation matrix diagonalizes **A**):

 $\mathbf{T}^{-1}\mathbf{A}\mathbf{T} = \mathbf{D}, \qquad \mathbf{D} = \begin{bmatrix} \lambda_1 & & & 0 \\ & \lambda_2 & & \\ & & \ddots & \\ 0 & & & \lambda_n \end{bmatrix}$

4) Calculate entries h_i $\mathbf{T}^{-l}\mathbf{g} = (h_i)$

5) Define the new variable $\mathbf{x} = \mathbf{T}\mathbf{y}$

Solve equations for $y_1,...,y_n$: $\mathbf{y}' = \mathbf{D}\mathbf{y} + \mathbf{T}^{-1}\mathbf{g}$ (equations are uncoupled)

 $y_{I}(t) = c_{I}e^{\lambda_{I}t} + e^{\lambda_{I}t} \int e^{-\lambda_{I}t} h_{I}dt$ \vdots

 $y_n(t) = c_n e^{\lambda_n t} + e^{\lambda_n t} \int e^{-\lambda_n t} h_n dt$

6) Obtain the general solution by $\mathbf{x} = \mathbf{T}\mathbf{y}$

II Variation of parameter

Fundamental matrix $\Psi = [\mathbf{x}_1 \ \mathbf{x}_2 \ ... \ \mathbf{x}_n]$

Particular solution: $\mathbf{x}_{p}(t) = \mathbf{\Psi}(t) \int \mathbf{\Psi}^{-1}(t) \mathbf{g}(t) dt$

General solution: $\mathbf{x}(t) = \mathbf{\Psi}(t)\mathbf{c} + \mathbf{\Psi}(t)\int \mathbf{\Psi}^{-1}(t)\mathbf{g}(t)dt$

Solution of IVP with the help of Ψ : $\mathbf{x}(t) = \Psi(t)\Psi^{-1}(t_0)\mathbf{x}^0 + \Psi(t)\int_{t_0}^t \Psi^{-1}(s)\mathbf{g}(s)ds$

Solution of IVP with the help of $\mathbf{\Phi}$: $\mathbf{x}(t) = \mathbf{\Phi}(t)\mathbf{x}^0 + \mathbf{\Phi}(t)\int_{t_0}^t \mathbf{\Phi}^{-1}(s)\mathbf{g}(s)ds$

III Undetermined coefficients

