EX-3-10.mws

 Example 3.10 in the Textbook:  expand the function f(t)=exp(-t) for t\in[-1,1] into

a complex exponential series;

>    restart: A:=-1;B:=1;N:=5;

A := -1

B := 1

N := 5

Function to be expanded on [-1,1]:  

>    f(t):=piecewise(t<A,0, t>A and t<B,exp(-t),t>B ,0); plot(f(t),t=-5..5);

f(t) := PIECEWISE([0, t < -1],[exp(-t), -1 < t and t < 1],[0, 1 < t])

[Maple Plot]

Fourier Coefficients:

>    c[n]:=1/2*int(f(t)*exp(-n*Pi*t*I),t=-1..1);

c[n] := -1/2*(-exp(2*I*n*Pi+1)+exp(-1))/(n*Pi*I+1)*exp(-I*n*Pi)

nth Partial Sum of the Complex Exponential Series Expansion;

>   

  E[N](t):=sum(c[n]*exp(n*Pi*t*I),n=-N..N);

E[5](t) := 1/2*(-exp(-10*I*Pi+1)+exp(-1))/(-5*I*Pi+1)*exp(-5*I*Pi*t)-1/2*(-exp(-8*I*Pi+1)+exp(-1))/(-4*I*Pi+1)*exp(-4*I*Pi*t)+1/2*(-exp(-6*I*Pi+1)+exp(-1))/(-3*I*Pi+1)*exp(-3*I*Pi*t)-1/2*(-exp(-4*I*Pi+...
E[5](t) := 1/2*(-exp(-10*I*Pi+1)+exp(-1))/(-5*I*Pi+1)*exp(-5*I*Pi*t)-1/2*(-exp(-8*I*Pi+1)+exp(-1))/(-4*I*Pi+1)*exp(-4*I*Pi*t)+1/2*(-exp(-6*I*Pi+1)+exp(-1))/(-3*I*Pi+1)*exp(-3*I*Pi*t)-1/2*(-exp(-4*I*Pi+...
E[5](t) := 1/2*(-exp(-10*I*Pi+1)+exp(-1))/(-5*I*Pi+1)*exp(-5*I*Pi*t)-1/2*(-exp(-8*I*Pi+1)+exp(-1))/(-4*I*Pi+1)*exp(-4*I*Pi*t)+1/2*(-exp(-6*I*Pi+1)+exp(-1))/(-3*I*Pi+1)*exp(-3*I*Pi*t)-1/2*(-exp(-4*I*Pi+...
E[5](t) := 1/2*(-exp(-10*I*Pi+1)+exp(-1))/(-5*I*Pi+1)*exp(-5*I*Pi*t)-1/2*(-exp(-8*I*Pi+1)+exp(-1))/(-4*I*Pi+1)*exp(-4*I*Pi*t)+1/2*(-exp(-6*I*Pi+1)+exp(-1))/(-3*I*Pi+1)*exp(-3*I*Pi*t)-1/2*(-exp(-4*I*Pi+...

>    plot({f(t),E[N](t)},t=-5..5,y=-2..3, color=[red,blue]);

[Maple Plot]

>