3rd order linear ODE with constant coefficients MapleFiles/ET502/ LODE3rdOrder.mws
> | restart; |
> | with(linalg): |
Warning, the protected names norm and trace have been redefined and unprotected
coefficients:
> | a0:=1;a1:=3;a2:=0;a3:=-4; |
> | f:=exp(2*x); |
auxilary equation:
> | ax:=a0*m^3+a1*m^2+a2*m+a3; |
> | solve(ax=0,m); |
fundamental set:
> | y1:=exp(-2*x); |
> | y2:=x*exp(-2*x); |
> | y3:=exp(x); |
Wronskians:
> | A:=matrix(3,3,[y1,y2,y3,diff(y1,x),diff(y2,x),diff(y3,x),diff(y1,x$2),diff(y2,x$2),diff(y3,x$2)]); |
> | A1:=matrix(2,2,[y2,y3,diff(y2,x),diff(y3,x)]); |
> | A2:=matrix(2,2,[y1,y3,diff(y1,x),diff(y3,x)]); |
> | A3:=matrix(2,2,[y1,y2,diff(y1,x),diff(y2,x)]); |
> | W:=simplify(det(A)); |
> | W1:=factor(simplify(det(A1))); |
> | W2:=factor(simplify(det(A2))); |
> | W3:=factor(simplify(det(A3))); |
Variation of parameter:
> | u1:=int(-W1/W*f/a0,x); |
> | u2:=int(W2/W*f/a0,x); |
> | u3:=int(-W3/W*f/a0,x); |
complimentary solution:
> | yc:=c[1]*y1+c[2]*y2+c[3]*y3; |
particular solution of non-homogeneous equation:
> | yp:=u1*y1+u2*y2+u3*y3; |
General solution of non-homogeneous equation:
> | y:=yc+yp; |
> | y:=simplify(y); |
> |
Solution curves of homogeneous equation:
> | p:={seq(seq(seq(i*exp(-2*x)+j*x*exp(-2*x)+k*exp(x),k=-1..1),i=-1..1),j=-1..1)}: |
> | plot(p,x=-1.5..2.5,color=black); |
Solution curves of n0n-homogeneous equation:
> | p1:={seq(seq(seq(i*exp(-2*x)+j*x*exp(-2*x)+k*exp(x)+yp,k=-1..1),i=-1..1),j=-1..1)}: |
> | plot(p1,x=-1.5..2.5,color=black); |
> |
> |