m03.mws

3rd order linear ODE with constant coefficients      MapleFiles/ET502/ LODE3rdOrder.mws

>    restart;

>    with(linalg):

Warning, the protected names norm and trace have been redefined and unprotected

coefficients:

>    a0:=1;a1:=3;a2:=0;a3:=-4;

a0 := 1

a1 := 3

a2 := 0

a3 := -4

>    f:=exp(2*x);

f := exp(2*x)

auxilary equation:

>    ax:=a0*m^3+a1*m^2+a2*m+a3;

ax := m^3+3*m^2-4

>    solve(ax=0,m);

1, -2, -2

fundamental set:

>    y1:=exp(-2*x);

y1 := exp(-2*x)

>    y2:=x*exp(-2*x);

y2 := x*exp(-2*x)

>    y3:=exp(x);

y3 := exp(x)

Wronskians:

>    A:=matrix(3,3,[y1,y2,y3,diff(y1,x),diff(y2,x),diff(y3,x),diff(y1,x$2),diff(y2,x$2),diff(y3,x$2)]);

A := matrix([[exp(-2*x), x*exp(-2*x), exp(x)], [-2*exp(-2*x), exp(-2*x)-2*x*exp(-2*x), exp(x)], [4*exp(-2*x), -4*exp(-2*x)+4*x*exp(-2*x), exp(x)]])

>    A1:=matrix(2,2,[y2,y3,diff(y2,x),diff(y3,x)]);

A1 := matrix([[x*exp(-2*x), exp(x)], [exp(-2*x)-2*x*exp(-2*x), exp(x)]])

>    A2:=matrix(2,2,[y1,y3,diff(y1,x),diff(y3,x)]);

A2 := matrix([[exp(-2*x), exp(x)], [-2*exp(-2*x), exp(x)]])

>    A3:=matrix(2,2,[y1,y2,diff(y1,x),diff(y2,x)]);

A3 := matrix([[exp(-2*x), x*exp(-2*x)], [-2*exp(-2*x), exp(-2*x)-2*x*exp(-2*x)]])

>    W:=simplify(det(A));

W := 9*exp(-3*x)

>    W1:=factor(simplify(det(A1)));

W1 := exp(-x)*(3*x-1)

>    W2:=factor(simplify(det(A2)));

W2 := 3*exp(-x)

>    W3:=factor(simplify(det(A3)));

W3 := exp(-4*x)

Variation of parameter:

>    u1:=int(-W1/W*f/a0,x);

u1 := -1/12*exp(x)^4*x+7/144*exp(x)^4

>    u2:=int(W2/W*f/a0,x);

u2 := 1/12*exp(x)^4

>    u3:=int(-W3/W*f/a0,x);

u3 := -1/9*exp(x)

complimentary solution:

>    yc:=c[1]*y1+c[2]*y2+c[3]*y3;

yc := c[1]*exp(-2*x)+c[2]*x*exp(-2*x)+c[3]*exp(x)

particular solution of non-homogeneous equation:

>    yp:=u1*y1+u2*y2+u3*y3;

yp := (-1/12*exp(x)^4*x+7/144*exp(x)^4)*exp(-2*x)+1/12*exp(x)^4*x*exp(-2*x)-1/9*exp(x)^2

General solution of non-homogeneous equation:

>    y:=yc+yp;

y := c[1]*exp(-2*x)+c[2]*x*exp(-2*x)+c[3]*exp(x)+(-1/12*exp(x)^4*x+7/144*exp(x)^4)*exp(-2*x)+1/12*exp(x)^4*x*exp(-2*x)-1/9*exp(x)^2

>    y:=simplify(y);

y := c[1]*exp(-2*x)+c[2]*x*exp(-2*x)+c[3]*exp(x)-1/16*exp(2*x)

>   

Solution curves of homogeneous equation:

>    p:={seq(seq(seq(i*exp(-2*x)+j*x*exp(-2*x)+k*exp(x),k=-1..1),i=-1..1),j=-1..1)}:

>    plot(p,x=-1.5..2.5,color=black);

[Maple Plot]

Solution curves of n0n-homogeneous equation:

>    p1:={seq(seq(seq(i*exp(-2*x)+j*x*exp(-2*x)+k*exp(x)+yp,k=-1..1),i=-1..1),j=-1..1)}:

>    plot(p1,x=-1.5..2.5,color=black);

[Maple Plot]

>   

>