m17.mws

m17.mws  020   4.6.4 1)   wave-1-DR.mws     WAVE EQUATION    X(0)=0,  X'(L)+HX(L)=0    (Dirichlet-Robin)

>    restart;

>    L:=10;H[2]:=3;a:=2;

L := 10

H[2] := 3

a := 2

characteristic equation:

>    w(x):=x*cos(x*L)+H[2]*sin(x*L);

w(x) := x*cos(10*x)+3*sin(10*x)

>    plot(w(x),x=0..2);

[Maple Plot]

Eigenvalues:

>    lambda:=array(1..100);

lambda := array(1 .. 100,[])

>    n:=1: for m from 1 to 100 do z:=fsolve(w(x)=0,x=m/5..(m+1)/5): if type(z,float) then lambda[n]:=z: n:=n+1 fi od:

>    for i to 5 do lambda[i] od;

.3040584751

.6083126850

.9129369619

1.218068300

1.523798943

>    N:=n-1;

N := 64

>    n:='n':i:='i':

Eigenfunctions:

>    X[n]:=sin(lambda[n]*x);

X[n] := sin(lambda[n]*x)

Squared norm:

>    NX2[n]:=int(X[n]^2,x=0..L);

NX2[n] := -1/2*(cos(10*lambda[n])*sin(10*lambda[n])-10*lambda[n])/lambda[n]

Initial conditions:

sinusoidal:

>    u0(x):=sin(x/L);u1(x):=sin(2*x/L);

u0(x) := sin(1/10*x)

u1(x) := sin(1/5*x)

impulse:

>    u0(x):=(Heaviside(x-6)-Heaviside(x-7));u1(x):=0;

u0(x) := Heaviside(x-6)-Heaviside(x-7)

u1(x) := 0

parabolic:

>    u0(x):=x*(L-x);u1(x):=1;

u0(x) := x*(10-x)

u1(x) := 1

Fourier coefficients:

>    b[n]:=int(u0(x)*X[n],x=0..L)/NX2[n];

b[n] := 4*(5*lambda[n]*sin(10*lambda[n])+cos(10*lambda[n])-1)/lambda[n]^2/(cos(10*lambda[n])*sin(10*lambda[n])-10*lambda[n])

>    d[n]:=int(u1(x)*X[n],x=0..L)/NX2[n]/lambda[n]/a;

d[n] := (cos(10*lambda[n])-1)/lambda[n]/(cos(10*lambda[n])*sin(10*lambda[n])-10*lambda[n])

Solution:

>    u(x,t):=sum(X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t)),n=1..N):

>    plot3d({u(x,t)},x=0..L,t=0..21,axes=boxed,style=wireframe,projection=0.9,color=black);

[Maple Plot]

>    with(plots):

Warning, the name changecoords has been redefined

>    animate({u(x,t),u0(x)},x=0..L,t=0..21,axes=boxed,frames=500);

[Maple Plot]

>   

SINGLE  WAVE:

>    u0(x):=(Heaviside(x-6)-Heaviside(x-7));u1(x):=0;

u0(x) := Heaviside(x-6)-Heaviside(x-7)

u1(x) := 0

Fourier coefficients:

>    b[n]:=int(u0(x)*X[n],x=0..L)/NX2[n];

b[n] := -2*(2*(32*cos(lambda[n])^6-48*cos(lambda[n])^4+18*cos(lambda[n])^2-1-64*cos(lambda[n])^7+112*cos(lambda[n])^5-56*cos(lambda[n])^3+7*cos(lambda[n]))/lambda[n]+(-32*cos(lambda[n])^6+48*cos(lambda...
b[n] := -2*(2*(32*cos(lambda[n])^6-48*cos(lambda[n])^4+18*cos(lambda[n])^2-1-64*cos(lambda[n])^7+112*cos(lambda[n])^5-56*cos(lambda[n])^3+7*cos(lambda[n]))/lambda[n]+(-32*cos(lambda[n])^6+48*cos(lambda...

>    d[n]:=int(u1(x)*X[n],x=0..L)/NX2[n]/lambda[n]/a;

d[n] := 0

Solution:

>    u(x,t):=sum(X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t)),n=1..N):

>    plot3d({u(x,t)},x=0..L,t=0..12,axes=boxed,projection=0.9,style=wireframe,grid=[150,150]);

[Maple Plot]

>    with(plots):

>    animate({u(x,t),u0(x)},x=0..L,t=0..21,axes=boxed,frames=300,numpoints=500);

[Maple Plot]

NORMAL MODES:

fundamental mode:

>    m1:=subs(n=1,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))):

>    animate({m1},x=0..L,t=0..9);

[Maple Plot]

1st overtone:

>    m2:=subs(n=2,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))):

>    animate({m2},x=0..L,t=0..9);

[Maple Plot]

2nd overtone:

>    m3:=subs(n=3,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))):

>    animate({m3},x=0..L,t=0..9);

[Maple Plot]

3rd overtone:

>    m4:=subs(n=4,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))):

>    animate({m4},x=0..L,t=0..9);

[Maple Plot]

>   

Standing Waves:       initial condition is in the form of overtone:

>    u0(x):=subs(n=8,X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t))):u1(x):=0;

u1(x) := 0

Fourier coefficients:

>    b[n]:=int(u0(x)*X[n],x=0..L)/NX2[n];

b[n] := 27561175.28*cos(4.889788366*t)*(2444894183.*sin(-24.44894183+10.*lambda[n])+1000000000.*sin(-24.44894183+10.*lambda[n])*lambda[n]+2444894183.*sin(24.44894183+10.*lambda[n])-1000000000.*sin(24.4...
b[n] := 27561175.28*cos(4.889788366*t)*(2444894183.*sin(-24.44894183+10.*lambda[n])+1000000000.*sin(-24.44894183+10.*lambda[n])*lambda[n]+2444894183.*sin(24.44894183+10.*lambda[n])-1000000000.*sin(24.4...
b[n] := 27561175.28*cos(4.889788366*t)*(2444894183.*sin(-24.44894183+10.*lambda[n])+1000000000.*sin(-24.44894183+10.*lambda[n])*lambda[n]+2444894183.*sin(24.44894183+10.*lambda[n])-1000000000.*sin(24.4...

>    d[n]:=int(u1(x)*X[n],x=0..L)/NX2[n]/lambda[n]/a;

d[n] := 0

Solution:

>    u(x,t):=sum(X[n]*(b[n]*cos(lambda[n]*a*t)+d[n]*sin(lambda[n]*a*t)),n=1..N):

>    with(plots):

>    animate({u(x,t),u0(x)},x=0..L,t=0..21,axes=boxed,frames=300,numpoints=500);

[Maple Plot]