Euler.mws

2nd order Euler-Cauchy equation     ODE/Euler.mws   example

>    restart;

>    with(linalg):

Warning, the protected names norm and trace have been redefined and unprotected

coefficients:

>    e0:=1;e1:=3;e2:=1;

e0 := 1

e1 := 3

e2 := 1

>    a0:=e0;a1:=e1-e0;a2:=e2;

a0 := 1

a1 := 2

a2 := 1

>    f:=z;

f := z

auxilary equation:

>    ax:=a0*m^2+a1*m+a2;

ax := m^2+2*m+1

>    solve(ax=0,m);

-1, -1

fundamental set:

>    y1:=exp(-z);

y1 := exp(-z)

>    y2:=z*exp(-z);

y2 := z*exp(-z)

Wronskians:

>    A:=matrix(2,2,[y1,y2,diff(y1,z),diff(y2,z)]);

A := matrix([[exp(-z), z*exp(-z)], [-exp(-z), exp(-z)-z*exp(-z)]])

>    W:=simplify(det(A));

W := exp(-2*z)

Variation of parameter:

>    VP1:=simplify(-y2/W*f/a0);

VP1 := -z^2*exp(z)

>    VP2:=simplify(y1/W*f/a0);

VP2 := z*exp(z)

>    u1:=simplify(int(VP1,z));

u1 := -exp(z)*(z^2-2*z+2)

>    u2:=simplify(int(VP2,z));

u2 := exp(z)*(z-1)

complimentary solution:

>    yc:=c[1]*y1+c[2]*y2;

yc := c[1]*exp(-z)+c[2]*z*exp(-z)

particular solution of non-homogeneous equation:

>    yp:=u1*y1+u2*y2;

yp := -exp(z)*(z^2-2*z+2)*exp(-z)+exp(z)*(z-1)*z*exp(-z)

>    yp:=simplify(yp);

yp := z-2

General solution of non-homogeneous equation:

>    y:=yc+yp;

y := c[1]*exp(-z)+c[2]*z*exp(-z)+z-2

>    y:=simplify(subs(z=ln(abs(x)),y));

y := (c[1]+c[2]*ln(abs(x))+ln(abs(x))*abs(x)-2*abs(x))/abs(x)

Solution curves of homogeneous equation:

>    p:={seq(seq(i*x+j*x*ln(abs(x))+ln(abs(x)),i=-2..2),j=-2..2)};

p := {-2*x-2*x*ln(abs(x))+ln(abs(x)), 2*x-x*ln(abs(x))+ln(abs(x)), x+x*ln(abs(x))+ln(abs(x)), 2*x-2*x*ln(abs(x))+ln(abs(x)), -2*x-x*ln(abs(x))+ln(abs(x)), -2*x+ln(abs(x)), -x+ln(abs(x)), x+ln(abs(x)), ...
p := {-2*x-2*x*ln(abs(x))+ln(abs(x)), 2*x-x*ln(abs(x))+ln(abs(x)), x+x*ln(abs(x))+ln(abs(x)), 2*x-2*x*ln(abs(x))+ln(abs(x)), -2*x-x*ln(abs(x))+ln(abs(x)), -2*x+ln(abs(x)), -x+ln(abs(x)), x+ln(abs(x)), ...
p := {-2*x-2*x*ln(abs(x))+ln(abs(x)), 2*x-x*ln(abs(x))+ln(abs(x)), x+x*ln(abs(x))+ln(abs(x)), 2*x-2*x*ln(abs(x))+ln(abs(x)), -2*x-x*ln(abs(x))+ln(abs(x)), -2*x+ln(abs(x)), -x+ln(abs(x)), x+ln(abs(x)), ...
p := {-2*x-2*x*ln(abs(x))+ln(abs(x)), 2*x-x*ln(abs(x))+ln(abs(x)), x+x*ln(abs(x))+ln(abs(x)), 2*x-2*x*ln(abs(x))+ln(abs(x)), -2*x-x*ln(abs(x))+ln(abs(x)), -2*x+ln(abs(x)), -x+ln(abs(x)), x+ln(abs(x)), ...

>    plot(p,x=-4..4,color=black);

[Maple Plot]

>   

>    p:={seq(seq(i*x+j*x*ln(abs(x))+ln(abs(x))+x-2,i=-2..2),j=-2..2)}:

>    plot(p,x=-2..2,color=black);

[Maple Plot]

>   

>   

>   

>   

>   

>   

>