Solution of the singular Sturm-Liouville Problem: vibration of the closed ring string (4.6.6 p.333)

Advanced Applied Engineering Mathematics

EngT 502/503

SYLLABUS

SCHEDULE WINTER 2006

 
MN
TU
WD
TH
FR
8 - 9
 
 
 
 
 
9 - 10
 
 
 
 
 
10 - 11
 
 
 
 
 
11 - 12
 
devotional
 
 
 
12- 1
class
CB 406
 
class
CB 406
 
class
CB 406
1 - 2
 
 
 
 
 
2 - 3
office
CB 133 Vladimir
 study session
CB 383
office
CB 133 Vladimir
 study session
CB 383
office
CB 133 Vladimir
3 - 4
office
CB 472 Reinhard
 study session
CB 383
office
CB 472 Reinhard
 study session
CB 383
office
CB 472 Reinhard


CLASS MATERIALS

tr>
CHAPTER
TOPIC
MAPLE EXAMPLES
EXERCISES
1
Some Topics from Linear Algebra
 
 
Set 6:
3 


2
Ordinary Differential Equations


Lecture Notes 2.1-2.5
(modified May 25, 2005)    

Lecture Notes 2.6 Systems of ODEs
(modified May 20, 2005)    

2nd order linear ODE with constant coefficients
 

3rd order linear ODE with constant coefficients
 

Euler-Cauchy Equation, example 4 (p.149)
 

Power Series Solution, example 2.11 (p.164)
 

Example of case 2 of Frobenius Theorem (TEST 1 #5c)
 

Systems of ODEs, example 4


Systems of ODEs with Maple, example 1


example 2 (autonomous system)


2.1:
10 

2.2.1-2:

1a 
1f 
1g 

2.2.3-4:
2e 
3a 

2.2.5:
1a 

2.4-5:
1 
8i 
10 

2.6:
4c



3
Fourier Analysis
 
Fourier Series
 

Half and Quater Range Expansions
 

Gibb's Phenomena
 

Example 3.10


Example 3.12 (Unit Pulse)


 
4
Partial Differential Equations


Lecture Notes (modified March 5, 2005)    

4.5.0    Banach and Hilbert Spaces
   

4.5.5   Sturm-Liouville problem for equation X''-mu*X=0, case 2) Robin-Diriclet b.c.'s
 

4.6.2   Laplace's Equation
Diriclet problem, basic case
 

4.6.2    8. Poisson's's Equation
Diriclet problem
 

Heat Equation:

4.6.3    1) 1-d homogeneous equation and boundary conditions (Neumann-Neumann)
 

4.6.3    2) 1-d non-homogeneous equation and boundary conditions (Dirichlet-Dirichlet)
 

4.6.3    3) 1-d homogeneous equation and boundary conditions (Dirichlet-Robin) - application of Sturm-Liouville Theorem
 

4.6.3    4) 2-D temperature field in rectangular domain
 

   Example of Diffusive Process:
   

Wave Equation:


4.6.4    1) 1-d homogeneous equation and boundary conditions (Dirichlet-Robin)
 


4.6.4.   2) vibration of circular membrane (standing waves)
 


4.6.6. Singular SLP:  vibration of the ring
   
Movies:
   


0  

2  

4  

5  

6   a b

9  

11  

16  

24  



 
5
Special Functions
 
Lecture Notes    


Orthogonal Sets in Annular Domain: 

Table of Contents 

1 Dirichlet-Dirichlet:
 Maple:  nu=0  nu=1

2 Neumann-Dirichlet:
 Maple:  nu=0  nu=1

3 Dirichlet-Neumann:
 Maple:  nu=0  nu=1

4 Neumann-Neumann:
 Maple:  nu=0  nu=1

5 Dirichlet-Robin:
 Maple:  nu=0  nu=1

6 Neumann-Robin:
 Maple:  nu=0  nu=1

7 Robin-Dirichlet:
 Maple:  nu=0  nu=1

8 Robin-Neumann:
 Maple:  nu=0  nu=1

9 Robin-Robin:
 Maple:  nu=0  nu=1



9   Maple:

6
Distributions
 

Solutions to Exercises

7
Integral Equations

Lecture Notes    

Lecture Notes (modified Feb 15, 2005: with Banach Fixed Point Theorem)   

 
 
8
Integral Transform Methods 8.1 The Fourier Transform:

Fourier Integral Representation(p.98)


Wave Equation(p.105)


Laplace's Equation (Poisson integral formula, p.107)


Heat Equation (p.112)


Laplace Equation (p.116)



8.2 The Laplace Transform:

Solution of Heat Equation(p.121)



Solution of Wave Equation(p.123)



8.3 The Hankel Transform:

Solution of Heat Equation(p.129)



Solution of Wave Equation(p.134)




8.4 Finite Fourier Transform:

8.4.2 Heat Equation in the Finite Layer(p.147)


8.4.3 Heat Equation in the Sphere(p.151)




8.6 Generalization of the Finite Integral Transform Method:

8.6.5 Transient Heat Transfer in the Fin(p.176)


HW#5 (Wave Equation)



 
13
Mathematical Foundations of Signal Reconstruction
Lecture Notes    
 
14
Mathematical Problems of Quantum Mechanics
Lecture Notes  

Harmonic Oscillator:

Hydrogen Atom:
 
17
Complex Analysis
 

Solutions to Exercises



Summary Tables


        All Tables

  00   Table of Integrals

  01   First Order ODE

  02   Linear ODE

  03   Power-Series Solution

  05   Linear System of First Order ODE

  06   Fourier Series

  07   Hyperbolic Functions & Special Equation

  08   Bessel Functions

  09   Sturm-Liouville Theorem

  10   Laplace Transform

  11   Table of Laplace Transforms

  12   Differentiation

  14   Infinite Series

  15   Complex Numbers

  16   Integration

  17   Limits

  18   Heat Equation

  20   Coordinate Systems

  21   Greek Letters

  22   Vectors in Euclidian Space


GRADING


  Grading Criteria



  Maple Guide

  Linear Algebra with Maple


LINKS


EngT295R Engineering Math Refresher Course

EqWorld The World of Mathematical Equation

The MacTutor History of Mathematics archive

Math Aware Month

Mathematics and Art



INSTRUCTORS


Dr. Reinhard O.W. Franz

Dr. Vladimir P. Solovjov
 

PHOTOS


EngT 502   Winter 2001
 
EngT 502   Fall 2004
 
EngT 503   Winter 2005
 
EngT 502   Spring 2005
 
EngT 502   Fall 2005
 

Origin of the Name "Mathematics"


  Why is mathematics so named?


tr>


Author Information

VOLUME 1    APRIL 2005


Brian C. Liechty  Non-Newtonian Behavior of a Rotating-Cylinder Induced Flow

Laura Hansen The Cross Correlation: an Essential Mathematical Computation for Particle Imaging Velocimetry

Craig Peterson  A Review of Integral Equations Describing the Radial Distribution Function of Fluids

Brady Woolford  Analytical Solution to Steady State and Transient Flow in Ultrahydrophobic Channels

Jason Thomas  Solving Poisson's Equation on a Discrete Mesh

VOLUME 2    JUNE 2005


Gifford Zach Decker  1D Momentum Integral Method (Thwaites) vs. 2D Finite Element Navier-Stokes Solution: Computing Flow Separtion, Flow Rate and Pressure Drop

VOLUME 3    NOVEMBER 2005


Gary Kenneth Johns  Modeling Piezoresistivity in Silicon and Polysilicon

Daniel Karpowitz Bezier Curve Fitting Method for Existing Turbine Blade Design


FINALS


EngT502 Final Fall 2004 Part I
 
Solution of problem #1  Maple Solution
Solution of problem #2  Maple Solution



Final Fall 2004 Part II
 

EngT503 Final Winter 2005

See new class photos and the first publications in
the Journal of Applied Engineering Mathematics.

Good Luck with Your Finals!!!

Part I
 
Quantum Mechanics Section: you can replace this problem by the problem of motion of Gaussian wave packet in 1-D or/and 2-D Coulomb's potential (Hydrogen atom or planetary motion in 1-D or 2-D microuniverse) with some visualization similar to the problem for harmonic oscillator (see Lecture Notes for Chapter 14 or ask me about the guidelines)

Solution    Maple Solution

Vibration of the rectangular membrane with damping:



Part II
 

EngT502 Final Spring 2005 Part I
 
Solution of problem #1  Maple Solution
Solution of problem #2  Maple Solution



Final Spring 2005 Part II

Reed the paper of Gifford Decker in the 2nd Volume of JAEM
Have a Good Summer!

EngT502 Final FALL 2005:
 
Project BB (Bouncing Ball)   Maple Solution





Solutions of Dan Karpowitz


Final 2005 Part I

Reed new papers in the 3rd Volume of JAEM
Merry Christmas and Happy New Year!


 PELE:   POISSON'S EQUATION -
              LAPLACE'S EQUATION

template

Solution of Poisson's Equation with non-homogeneous boundary conditions:


  01 DDDD    
  02 NDDR    
  03 NNRD    
  04 DRND    
  05 RDDN    
  06 DDNR    
  07 DNRN    
  08 DDNN    
  09 DDRR    
  10 DNRR    
  11 RRDR    
  12 RNRR    
  13 RRNN    
  14 DRRD    
  15 RRRR